Abstract

In order to improve the temperature maintenance capacity for the battery of the extended-range electric vehicle (EREV) in a low-temperature environment, a microencapsulated phase-change material suspension (MPCMS)-based integrated thermal management system (ITMS) is proposed. The working modes of the proposed ITMS are divided based on series-parallel connections of the battery thermal management system (BTMS), motor thermal management system, motor thermal management system, and auxiliary power unit (APU) thermal management system; the structural parameters of the proposed ITMS are determined by robust design, and the system performance difference between the proposed ITMS and the traditional BTMS is verified through the comparative simulation in −20 °C environment. The results show that the proposed ITMS can significantly delay the decline of battery temperature in the charge-depleting (CD) stage and can reduce the time of the positive temperature coefficient (PTC) heater being on by 27.26%, and the total time being on by 54.82%. During the charge-sustaining (CS) stage, when the PTC heater is off, the average battery temperature will increase by 15.33 °C compared with the traditional BTMS. Based on the proposed ITMS, the temperature maintenance capability for the battery can be significantly improved, and the energy consumption of the PTC heater and vehicle can be reduced by 48.12–100% and 13.44–33.58%, respectively.

References

1.
Li
,
J.
,
Wu
,
X.
,
Xu
,
M.
, and
Liu
,
Y.
,
2021
, “
A Real-Time Optimization Energy Management of Range Extended Electric Vehicles for Battery Lifetime and Energy Consumption
,”
J. Power Sources
,
498
, p.
229939
.
2.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2017
, “
Novel Thermal Management System Using Boiling Cooling for High-Powered Lithium-Ion Battery Packs for Hybrid Electric Vehicles
,”
J. Power Sources
,
363
, pp.
291
303
.
3.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2021
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME. J. Thermal. Sci. Eng. Appl.
,
13
(
2
), p.
021015
.
4.
Cheng
,
J.
,
Li
,
J.
,
Gao
,
Q.
, and
Tang
,
Z.
,
2020
, “
Numerical Analysis of Temperature Uniformity of Liquid Cooling Based Battery Module With Incremental Heat Transfer Area
,”
ASME. J. Thermal Sci. Eng. Appl.
,
12
(
5
), p.
051006
.
5.
Shen
,
Z.-G.
,
Chen
,
S.
,
Xun Liu
,
X.
, and
Chen
,
B.
,
2021
, “
"A Review on Thermal Management Performance Enhancement of Phase Change Materials for Vehicle Lithium-Ion Batteries,”
,”
Renewable Sustainable Energy Rev
,
148
, p.
111301
.
6.
Zhu
,
T.
,
Min
,
H.
,
Yu
,
Y.
,
Zhao
,
Z.
,
Xu
,
T.
,
Chen
,
Y.
,
Li
,
X.
, and
Zhang
,
C.
,
2017
, “
An Optimized Energy Management Strategy for Preheating Vehicle-Mounted Li-Ion Batteries at Subzero Temperatures
,”
Energies
,
10
(
2
), p.
243
.
7.
Kang
,
H.
,
Sim
,
S.
, and
Shin
,
Y.
,
2018
, “
A Numerical Study on the Light-Weight Design of Ptc Heater for an Electric Vehicle Heating System
,”
Energies
,
11
(
5
), p.
1276
.
8.
Shin
,
Y.
,
Ahn
,
S.
, and
Kim
,
S.
,
2016
, “
Performance Characteristics of PTC Elements for an Electric Vehicle Heating System
,”
Energies
,
9
(
10
), p.
813
.
9.
Lee
,
J. T.
,
Kwon
,
S.
,
Lim
,
Y.
,
Chon
,
M. S.
, and
Kim
,
D.
,
2013
, “
Effect of Air-Conditioning on Driving Range of Electric Vehicle for Various Driving Modes
,”
SAE Technical Paper Series
,
1
.
10.
Zhang
,
Z.
,
Li
,
W.
,
Zhang
,
C.
,
Shi
,
J.
, and
Chen
,
J.
,
2016
, “
A Study on Heat Load Character of EV in Cold Climate
,”
J Refrig
,
37
(
5
), pp.
39
44
.
11.
Leighton
,
D.
,
2015
, “
Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement
,”
SAE Int. J. Passeng. Cars—Mechan. Syst.
,
8
(
2
), pp.
711
720
.
12.
Liu
,
F.
,
Lan
,
F.
, and
Chen
,
J.
,
2016
, “
Dynamic Thermal Characteristics of Heat Pipe via Segmented Thermal Resistance Model for Electric Vehicle Battery Cooling
,”
J. Power Sources
,
321
, pp.
57
70
.
13.
Xu
,
J.
,
Zhang
,
C.
,
Fan
,
R.
,
Bao
,
H.
,
Wang
,
Y.
,
Huang
,
S.
,
Chin
,
C. S.
, and
Li
,
C.
,
2020
, “
Modelling and Control of Vehicle Integrated Thermal Management System of PEM Fuel Cell Vehicle
,”
Energy
,
199
, p.
117495
.
14.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2015
, “
Experimental Study of Oil Cooling Systems for Electric Motors
,”
Appl. Therm. Eng.
,
75
, pp.
1
13
.
15.
Tian
,
Z.
,
Gu
,
B.
,
Gao
,
W.
, and
Zhang
,
Y.
,
2020
, “
Performance Evaluation of an Electric Vehicle Thermal Management System With Waste Heat Recovery
,”
Appl. Therm. Eng.
,
169
.
16.
Tian
,
Z.
,
Gan
,
W.
,
Zhang
,
X.
,
Gu
,
B.
, and
Yang
,
L.
,
2018
, “
Investigation on an Integrated Thermal Management System With Battery Cooling and Motor Waste Heat Recovery for Electric Vehicle
,”
Appl. Therm. Eng.
,
136
, pp.
16
27
.
17.
Hemmati
,
S.
,
Doshi
,
N.
,
Hanover
,
D.
,
Morgan
,
C.
, and
Shahbakhti
,
M.
,
2021
, “
Integrated Cabin Heating and Powertrain Thermal Energy Management for a Connected Hybrid Electric Vehicle
,”
Appl. Energy
,
283
, p.
116353
.
18.
Cen
,
J.
, and
Jiang
,
F.
,
2020
, “
Li-Ion Power Battery Temperature Control by a Battery Thermal Management and Vehicle Cabin Air Conditioning Integrated System
,”
Energy Sustainable Dev.
,
57
, pp.
141
148
.
19.
Talluri
,
T.
,
Kim
,
T. H.
, and
Shin
,
K. J.
,
2020
, “
Analysis of a Battery Pack With a Phase Change Material for the Extreme Temperature Conditions of an Electrical Vehicle
,”
Energies
,
13
(
3
), p.
507
.
20.
Nomura
,
T.
,
Zhu
,
C.
,
Nan
,
S.
,
Tabuchi
,
K.
,
Wang
,
S.
, and
Akiyama
,
T.
,
2016
, “
High Thermal Conductivity Phase Change Composite With a Metal-Stabilized Carbon-Fiber Network
,”
Appl. Energy
,
179
, pp.
1
6
.
21.
Zhong
,
G.
,
Zhang
,
G.
,
Yang
,
X.
,
Li
,
X.
,
Wang
,
Z.
,
Yang
,
C.
,
Yang
,
C.
, and
Gao
,
G.
,
2017
, “
Researches of Composite Phase Change Material Cooling/Resistance Wire Preheating Coupling System of a Designed 18650-Type Battery Module
,”
Appl. Therm. Eng.
,
127
, pp.
176
183
.
22.
Luo
,
M.
,
Song
,
J.
,
Ling
,
Z.
,
Zhang
,
Z.
, and
Fang
,
X.
,
2021
, “
Phase Change Material Coat for Battery Thermal Management With Integrated Rapid Heating and Cooling Functions From −40 °C to 50 °C
,”
Mater. Today Energy
,
20
, p.
100652
.
23.
Mo
,
S.
,
Ye
,
J.
,
Jia
,
L.
, and
Chen
,
Y.
,
2022
, “
Properties and Performance of Hybrid Suspensions of MPCM/Nanoparticles for LED Thermal Management
,”
Energy
,
239
, p.
122650
.
24.
Jurkowska
,
M.
, and
Szczygieł
,
I.
,
2016
, “
Review on Properties of Microencapsulated Phase Change Materials Slurries (mPCMS)
,”
Appl. Therm. Eng.
,
98
, pp.
365
373
.
25.
Zhu
,
Y.
,
Liang
,
S.
,
Wang
,
H.
,
Zhang
,
K.
,
Jia
,
X.
,
Tian
,
C.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2016
, “
Morphological Control and Thermal Properties of Nanoencapsulated n-Octadecane Phase Change Material With Organosilica Shell Materials
,”
Energy Convers. Manage.
,
119
, pp.
151
162
.
26.
Praveen
,
B.
, and
Suresh
,
S.
,
2019
, “
Thermal Performance of Micro-encapsulated PCM With LMA Thermal Percolation in TES Based Heat Sink Application
,”
Energy Convers. Manage.
,
185
, pp.
75
86
.
27.
Qiu
,
Z.
,
Ma
,
X.
,
Zhao
,
X.
,
Li
,
P.
, and
Ali
,
S.
,
2016
, “
Experimental Investigation of the Energy Performance of a Novel Micro-encapsulated Phase Change Material (MPCM) Slurry Based PV/T System
,”
Appl. Energy
,
165
, pp.
260
271
.
28.
Yu
,
Q.
,
Romagnoli
,
A.
,
Yang
,
R.
,
Xie
,
D.
,
Liu
,
C.
,
Ding
,
Y.
, and
Li
,
Y.
,
2019
, “
Numerical Study on Energy and Exergy Performances of a Microencapsulated Phase Change Material Slurry Based Photovoltaic/Thermal Module
,”
Energy Convers. Manage.
,
183
, pp.
708
720
.
29.
Cheng
,
J.
,
Zhou
,
Y.
,
Ma
,
D.
,
Li
,
S.
,
Zhang
,
F.
,
Guan
,
Y.
,
Qu
,
W.
,
Jin
,
Y.
, and
Wang
,
D.
,
2020
, “
Preparation and Characterization of Carbon Nanotube Microcapsule Phase Change Materials for Improving Thermal Comfort Level of Buildings
,”
Constr. Build. Mater.
,
244
, p.
118388
.
30.
Bai
,
F.
,
Chen
,
M.
,
Song
,
W.
,
Yu
,
Q.
,
Li
,
Y.
,
Feng
,
Z.
, and
Ding
,
Y.
,
2019
, “
Investigation of Thermal Management for Lithium-Ion Pouch Battery Module Based on Phase Change Slurry and Mini Channel Cooling Plate
,”
Energy
,
167
, pp.
561
574
.
31.
Wang
,
F.
,
Cao
,
J.
,
Ling
,
Z.
,
Zhang
,
Z.
, and
Fang
,
X.
,
2020
, “
Experimental and Simulative Investigations on a Phase Change Material Nano-Emulsion-Based Liquid Cooling Thermal Management System for a Lithium-Ion Battery Pack
,”
Energy
,
207
, p.
118215
.
32.
Pakrouh
,
R.
,
Hosseini
,
M. J.
,
Bahrampoury
,
R.
,
Ranjbar
,
A. A.
, and
Borhani
,
S. M.
,
2021
, “
Cylindrical Battery Thermal Management Based on Microencapsulated Phase Change Slurry
,”
J. Energy Storage
,
40
, p.
102602
.
33.
Agresti
,
F.
,
Fedele
,
L.
,
Rossi
,
S.
,
Cabaleiro
,
D.
,
Bobbo
,
S.
,
Ischia
,
G.
, and
Barison
,
S.
,
2019
, “
Nano-encapsulated PCM Emulsions Prepared by a Solvent-Assisted Method for Solar Applications
,”
Sol. Energy Mater. Sol. Cells
,
194
, pp.
268
275
.
34.
Cabaleiro
,
D.
,
Agresti
,
F.
,
Barison
,
S.
,
Marcos
,
M. A.
,
Prado
,
J. I.
,
Rossi
,
S.
,
Bobbo
,
S.
, and
Fedele
,
L.
,
2019
, “
Development of Paraffinic Phase Change Material Nanoemulsions for Thermal Energy Storage and Transport in Low-Temperature Applications
,”
Appl. Therm. Eng.
,
159
, p.
113868
.
35.
Chen
,
J.
, and
Zhang
,
P.
,
2017
, “
Preparation and Characterization of Nano-sized Phase Change Emulsions as Thermal Energy Storage and Transport Media
,”
Appl. Energy
,
190
, pp.
868
879
.
36.
Wang
,
T.
,
Wu
,
X.
,
Xu
,
S.
,
Hofmann
,
H.
,
Du
,
J.
,
Li
,
J.
,
Ouyang
,
M.
, and
Song
,
Z.
,
2018
, “
Performance of Plug-in Hybrid Electric Vehicle Under Low Temperature Condition and Economy Analysis of Battery Pre-heating
,”
J. Power Sources
,
401
, pp.
245
254
.
37.
Sarier
,
N.
, and
Onder
,
E.
,
2012
, “
Organic Phase Change Materials and Their Textile Applications: An Overview
,”
Thermochim. Acta
,
540
, pp.
7
60
.
38.
Dutkowski
,
K.
,
Kruzel
,
M.
,
Zajączkowski
,
B.
, and
Białko
,
B.
,
2020
, “
The Experimental Investigation of mPCM Slurries Density at Phase Change Temperature
,”
Int. J. Heat Mass Transfer
,
159
, p.
120083
.
39.
Li
,
H.
,
Xiao
,
X.
,
Wang
,
Y.
,
Lian
,
C.
,
Li
,
Q.
, and
Wang
,
Z.
,
2020
, “
Performance Investigation of a Battery Thermal Management System With Microencapsulated Phase Change Material Suspension
,”
Appl. Therm. Eng.
,
180
, p.
115795
.
40.
Liao
,
G.
,
Wang
,
W.
,
Zhang
,
F.
,
J
,
E.
,
Chen
,
J.
, and
Leng
,
E.
,
2022
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System Based on Nanofluid
,”
Appl. Therm. Eng.
,
216
, p.
118997
.
41.
Wang
,
Y.
,
Wang
,
Z.
,
Min
,
H.
,
Li
,
H.
, and
Li
,
Q.
,
2021
, “
Performance Investigation of a Passive Battery Thermal Management System Applied With Phase Change Material
,”
J. Energy Storage
,
35
, p.
102279
.
42.
Ma
,
Y.
,
Ding
,
H.
,
Mou
,
H.
, and
Gao
,
J.
,
2021
, “
Battery Thermal Management Strategy for Electric Vehicles Based on Nonlinear Model Predictive Control
,”
Measurement
,
186
, p.
110115
.
43.
Ma
,
Y.
,
Mou
,
H.
, and
Zhao
,
H.
,
2020
, “
Cooling Optimization Strategy for Lithium-Ion Batteries Based on Triple-Step Nonlinear Method
,”
Energy
,
201
, p.
117678
.
44.
Wang
,
Z. R.
,
Huang
,
L. P.
, and
He
,
F.
,
2022
, “
Design and Analysis of Electric Vehicle Thermal Management System Based on Refrigerant-Direct Cooling and Heating Batteries
,”
J. Energy Storage
,
51
, p.
104318
.
45.
Rezaei
,
H.
,
Ghomsheh
,
M. J.
,
Kowsary
,
F.
, and
Ahmadi
,
P.
,
2021
, “
Performance Assessment of a Range-Extended Electric Vehicle Under Real Driving Conditions Using Novel PCM-Based HVAC System
,”
Sustainable Energy Technol.
,
47
, p.
101527
.
46.
Wang
,
T.
, and
Wagner
,
J.
,
2015
, “
Advanced Automotive Thermal Management—Nonlinear Radiator Fan Matrix Control
,”
Control Eng. Practice
,
41
, pp.
113
123
.
You do not currently have access to this content.