Abstract

The aim of this study was to enhance the accuracy of predicting the temperature field of frozen soil and to reduce the workload of thermal parameter testing. To achieve this, we employed a three-phase model comprising soil, water, and ice. The unfrozen water content in frozen soil at varying temperatures was determined using nuclear magnetic resonance spectroscopy (NMR), while the thermal conductivity was measured by a thermal characteristic analyzer. A matlab software-based random model of the frozen soil was then established and imported into COMSOL simulation software. The repeatability and reproducibility of the established model were verified by varying the proportions of pore water and frozen ice to determine the degree of simulation accuracy.The results demonstrated that the unfrozen water content maintained a dynamic equilibrium relationship with temperature, which influenced the thermal conductivity of frozen soil. The simulation results were consistent with those obtained from instrument measurements of trends with respect to temperature. The average PBIAS value between the calculated and measured values was 0.0139, indicating theoretical feasibility. Comparison with experimental data confirmed the effectiveness of our approach, providing a novel concept and a simple method for predicting the temperature field of frozen soil engineering in areas that experience seasonal freezing.

References

1.
Kumar
,
S.
, and
Murugesan
,
K.
,
2022
, “
Experimental Study of Heat Extraction and Soil Recovery During Space Heating Application Using Ground Source Heat Pump System
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111004
.
2.
Hiraiwa
,
Y.
, and
Kasubuchi
,
T.
,
2000
, “
Temperature Dependence of Thermal Conductivity of Soil Over a Wide Range of Temperature (5–75℃)
,”
Eur. J. Soil Sci.
,
51
(
2
), pp.
211
218
.
3.
Sepaskhah
,
A. R.
, and
Boersma
,
L.
,
1979
, “
Thermal Conductivity of Soils as a Function of Temperature and Water Content
,”
Soil Sci. Soc. Am. J.
,
43
(
3
), pp.
439
444
.
4.
Dong
,
Y.
,
McCartney
,
J. S.
, and
Lu
,
N.
,
2015
, “
Critical Review of Thermal Conductivity Models for Unsaturated Soils
,”
Geotech. Geol. Eng.
,
33
(
2
), pp.
207
221
.
5.
Ghanbarian
,
B.
, and
Daigle
,
H.
,
2016
, “
Thermal Conductivity in Porous Media: Percolation-Based Effective-Medium Approximation
,”
Water Resour. Res.
,
52
(
1
), pp.
295
314
.
6.
Zhang
,
N.
, and
Wang
,
Z.
,
2017
, “
Review of Soil Thermal Conductivity and Predictive Models
,”
Int. J. Therm. Sci.
,
117
, pp.
172
183
.
7.
Chen
,
Z. X.
,
Guo
,
X. X.
,
Shao
,
L. T.
, and
Li
,
S. Q.
,
2020
, “
On Determination Method of Thermal Conductivity of Soil Solid Material
,”
Soils Found.
,
60
(
1
), pp.
218
228
.
8.
Nicolas
,
J.
,
André
,
P.
,
Rivez
,
J. F.
, and
Debbaut
,
V.
,
1993
, “
Thermal Conductivity Measurements in Soil Using an Instrument Based on the Cylindrical Probe Method
,”
Rev. Sci. Instrum.
,
64
(
3
), pp.
774
780
.
9.
Alrtimi
,
A.
,
Rouainia
,
M.
, and
Manning
,
D. A. C.
,
2014
, “
An Improved Steady-State Apparatus for Measuring Thermal Conductivity of Soils
,”
Int. J. Heat Mass Transfer
,
72
, pp.
630
636
.
10.
Kersten
,
M. S.
,
1949
, “
Laboratory Research for the Determination of Thermal Properties of Soils
,” ACFEL Technical Report 23.
University of Minnesota
,
Minneapolis
.
11.
Salomone Lawrence
,
A.
,
Kovacs William
,
D.
, and
Kusuda
,
T.
,
1984
, “
Thermal Performance of Fine-Grained Soils
,”
J. Geotech. Eng.
,
110
(
3
), pp.
359
374
.
12.
Overduin
,
P. P.
,
Kane
,
D. L.
, and
van Loon
,
W. K. P.
,
2006
, “
Measuring Thermal Conductivity in Freezing and Thawing Soil Using the Soil Temperature Response to Heating
,”
Cold Reg. Sci. Technol.
,
45
(
1
), pp.
8
22
.
13.
Johansen
,
O.
,
1977
, “
Thermal Conductivity of Soils
,”
Ph.D. thesis
,
Trondheim University
,
Trondheim, Norway
.
14.
Wang
,
E. L.
,
Jiang
,
H. Q.
,
Cui
,
E. T.
,
Xie
,
F.
, and
Xiao
,
Y.
,
2018
, “
Study on the Effect of Freezing and Thawing on Thermal Conductivity of Remolded Clay
,”
K. Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys.
,
39
(
4
), pp.
871
879
.
15.
He
,
H.
,
Flerchinger
,
G. N.
,
Kojima
,
Y.
,
Dyck
,
M.
, and
Lv
,
J.
,
2021
, “
A Review and Evaluation of 39 Thermal Conductivity Models for Frozen Soils
,”
Geoderma
,
382
, p.
114694
.
16.
Liu
,
L.
,
He
,
H.
,
Dyck
,
M.
, and
Lv
,
J.
,
2021
, “
Modeling Thermal Conductivity of Clays: A Review and Evaluation of 28 Predictive Models
,”
Eng. Geol.
,
288
, p.
106107
.
17.
Lyu
,
C.
,
Sun
,
Q.
,
Zhang
,
W.
, and
Geng
,
J.
,
2020
, “
A Predictive Model for the Thermal Conductivity of Silty Clay Soil Based on Soil Porosity and Saturation
,”
Arab. J. Geosci.
,
13
(
8
), p.
312
.
18.
Fiala
,
L.
,
Jerman
,
M.
,
Reiterman
,
P.
, and
Černý
,
R.
,
2017
, “
Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory
,”
Int. J. Thermophys.
,
39
(
2
), p.
28
.
19.
Baragh
,
S.
,
Shokouhmand
,
H.
,
Ajarostaghi
,
S. S. M.
, and
Nikian
,
M.
,
2018
, “
An Experimental Investigation on Forced Convection Heat Transfer of Single-Phase Flow in a Channel With Different Arrangements of Porous Media
,”
Int. J. Therm. Sci.
,
134
, pp.
370
379
.
20.
Fricke
,
H.
,
1925
, “
A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems ii. The Capacity of a Suspension of Conducting Spheroids Surrounded by a Non-Conducting Membrane for a Current of Low Frequency
,”
Phys. Rev.
,
26
(
5
), pp.
678
681
.
21.
Webb
,
J.
,
1956
, “
Thermal Conductivity of Soil
,”
Nature
,
178
(
4541
), pp.
1074
1075
.
22.
Behroozmand
,
A. A.
,
Keating
,
K.
, and
Auken
,
E.
,
2015
, “
A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization
,”
Surv. Geophys.
,
36
(
1
), pp.
27
85
.
23.
Ren
,
Z.
,
Liu
,
J.
,
Jiang
,
H.
, and
Wang
,
E.
,
2023
, “
Experimental Study and Simulation for Unfrozen Water and Compressive Strength of Frozen Soil Based on Artificial Freezing Technology
,”
Cold Reg. Sci. Technol.
,
205
, p.
103711
.
24.
Zhang
,
P.
,
Ma
,
Z. W.
,
Shi
,
X. J.
, and
Xiao
,
X.
,
2014
, “
Thermal Conductivity Measurements of a Phase Change Material Slurry Under the Influence of Phase Change
,”
Int. J. Therm. Sci.
,
78
, pp.
56
64
.
25.
Gurra
,
E.
,
Iasiello
,
M.
,
Naso
,
V.
, and
Chiu
,
W. K. S.
,
2023
, “
Numerical Prediction and Correlations of Effective Thermal Conductivity in a Drilled-Hollow-Sphere Architected Foam
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
4
), p.
041002
.
26.
Anderson
,
D. M.
, and
Tice
,
A. R.
,
1972
, “
Predicting Unfrozen Water Contents in Frozen Soils From Surface Area Measurements
,”
Highw. Res. Rec.
,
393
(
2
), pp.
12
18
.
27.
El-Maghlany
,
W. M.
,
Bedir
,
A. E.-R.
,
Elhelw
,
M.
, and
Attia
,
A.
,
2019
, “
Freeze-Drying Modeling via Multi-Phase Porous Media Transport Model
,”
Int. J. Therm. Sci.
,
135
, pp.
509
522
.
28.
Xizhong
,
Y.
,
Ning
,
L.
, and
Xiuyun
,
Z.
,
2010
, “
Study of Thermal Conductivity Model for Unsaturated Unfrozen and Frozen Soils
,”
Rock Soil Mech.
,
31
(
9
), pp.
2689
2694
.
29.
Balland
,
V.
, and
Arp
,
P. A.
,
2005
, “
Modeling Soil Thermal Conductivities Over a Wide Range of Conditions
,”
J. Environ. Eng. Sci.
,
4
(
6
), pp.
549
558
.
30.
Jankowfsky
,
S.
,
Branger
,
F.
,
Braud
,
I.
,
Rodriguez
,
F.
,
Debionne
,
S.
, and
Viallet
,
P.
,
2014
, “
Assessing Anthropogenic Influence on the Hydrology of Small Peri-Urban Catchments: Development of the Object-Oriented PUMMA Model by Integrating Urban and Rural Hydrological Models
,”
J. Hydrol.
,
517
, pp.
1056
1071
.
31.
Chen
,
C.
,
Xu
,
D.
,
Li
,
W.
,
Li
,
W.
,
Yao
,
L.
, and
Zhang
,
B.
,
2018
, “
Study on Thermal Conductivity Based on the Three-Component Reconstruction Model
,”
For. Eng.
,
34
(
3
), pp.
74
78
.
32.
Lu
,
S.
,
Ren
,
T.
,
Gong
,
Y.
, and
Horton
,
R.
,
2007
, “
An Improved Model for Predicting Soil Thermal Conductivity From Water Content at Room Temperature
,”
Soil Sci. Soc. Am. J.
,
71
(
1
), pp.
8
14
.
You do not currently have access to this content.