Abstract

The present work provides a reliable computational framework to investigate the laminar and turbulent forced convection of sodium and sodium–potassium (Na, NaK) in small-scale heat sinks with hydraulic diameters between 1 mm and 5 mm. Na and NaK flow and heat transfer are studied numerically for a wide range of Reynolds numbers from 600 to 9000 in three sharp-cornered miniature heat sinks with rectangular, pentagonal, and hexagonal cross sections. For a fixed surface area to volume ratio, it is observed that the rectangular minichannel heat sink provides the highest convective heat transfer rates. The rectangular miniature heat sink is shown to provide 280% higher convective heat transfer rates in comparison with the pentagonal heat sink. Moreover, the obtained convective heat transfer coefficients for NaK are almost 20% higher than the ones for Na in the investigated pentagonal heat sink. For the same flow Peclet number in the rectangular and hexagonal heat sinks, both Na and NaK provide nearly identical average Nusselt numbers. However, NaK shows greater local and average Nusselt numbers compared to Na at the same Reynolds number.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Naqiuddin
,
N. H.
,
Saw
,
L. H.
,
Yew
,
M. C.
,
Yusof
,
F.
,
Ng
,
T. C.
, and
Yew
,
M. K.
,
2018
, “
Overview of Micro-Channel Design for High Heat Flux Application
,”
Renewable Sustain. Energy Rev.
,
82
, pp.
901
914
.
3.
Ansari
,
M. Q.
, and
Zhou
,
G.
,
2020
, “
Flow and Heat Transfer Analysis of Microchannels Structured With Rectangular Surface Roughness
,”
Chem. Eng. Process.—Process Intensif.
,
156
, p.
108066
.
4.
Jia
,
J.
,
Song
,
Q.
,
Liu
,
Z.
, and
Wang
,
B.
,
2019
, “
Effect of Wall Roughness on Performance of Microchannel Applied in Microfluidic Device
,”
Microsyst. Technol.
,
25
, pp.
2385
2397
.
5.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
.
6.
Peng
,
Y.
,
Li
,
Z.
,
Li
,
S.
,
Cao
,
B.
,
Wu
,
X.
, and
Zhao
,
X.
,
2021
, “
The Experimental Study of the Heat Transfer Performance of a Zigzag-Serpentine Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
163
(
March 2020
), p.
106831
.
7.
Shi
,
X.
,
Li
,
S.
,
Mu
,
Y.
, and
Yin
,
B.
,
2019
, “
Geometry Parameters Optimization for a Microchannel Heat Sink With Secondary Flow Channel
,”
Int. Commun. Heat Mass Transfer.
,
104
, pp.
89
100
.
8.
Ma
,
D. D.
,
Xia
,
G. D.
,
Wang
,
J.
,
Yang
,
Y. C.
,
Jia
,
Y. T.
, and
Zong
,
L. X.
,
2017
, “
An Experimental Study on Hydrothermal Performance of Microchannel Heat Sinks With 4-Ports and Offset Zigzag Channels
,”
Energy Convers. Manage.
,
152
, pp.
157
165
.
9.
Zhou
,
F.
,
Zhou
,
W.
,
Zhang
,
C.
,
Qiu
,
Q.
,
Yuan
,
D.
, and
Chu
,
X.
,
2020
, “
Experimental and Numerical Studies on Heat Transfer Enhancement of Microchannel Heat Exchanger Embedded With Different Shape Micropillars
,”
Appl. Therm. Eng.
,
175
, p.
115296
.
10.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer.
,
108
, pp.
1969
1981
.
11.
Ramesh
,
K. N.
,
Sharma
,
T. K.
, and
Rao
,
G. A. P.
,
2021
, “
Latest Advancements in Heat Transfer Enhancement in the Micro-Channel Heat Sinks: A Review
,”
Archiv. Comput. Meth. Eng.
,
28
(
4
), pp.
3135
3165
.
12.
Zhou
,
J.
,
Cao
,
X.
,
Zhang
,
N.
,
Yuan
,
Y.
,
Zhao
,
X.
, and
Hardy
,
D.
,
2020
, “
Micro-Channel Heat Sink: A Review
,”
J. Therm. Sci.
,
29
(
6
), pp.
1431
1462
.
13.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer.
,
49
(
17–18
), pp.
3060
3067
.
14.
Pourghasemi
,
M.
, and
Fathi
,
N.
,
2022
, “
Probing the Accuracy of Experimental Data on Nusselt Numbers Within Miniature Heat Sinks
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111001
.
15.
Haiping
,
C.
,
Jiguang
,
H.
,
Heng
,
Z.
,
Kai
,
L.
,
Haowen
,
L.
, and
Shuangyin
,
L.
,
2019
, “
Experimental Investigation of a Novel Low Concentrating Photovoltaic/Thermal–Thermoelectric Generator Hybrid System
,”
Energy
,
166
, pp.
83
95
.
16.
Zhang
,
X. D.
,
Gao
,
J. Y.
, and
Liu
,
J.
,
2020
, “
Comparative Study of Heat Transfer in a Mini/Micro Pipe With Water and Liquid Metal as Fluid
,”
Proceedings of the ASME 2020 Heat Transfer Summer Confere (HT2020)
,
Virtual Online
,
July 13–15
, p. V001T10A001.
17.
Pourghasemi
,
M.
, and
Fathi
,
N.
,
2022
, “
Verification Assessment of Thermal Models in Conjugate Heat Transfer Analysis of Small-Scale Heat Sinks
,”
Proceedings of the ASME VVUQ 2022 Symposium
,
College Station, TX
,
May 25–26
, p.
V001T07A003
.
18.
Pourghasemi
,
M.
, and
Fathi
,
N.
,
2023
, “
Enhancement of Liquid Sodium (Na) Forced Convection Within Miniature Heat Sinks
,”
ASME J. Heat Transfer-Trans. ASME
,
145
(
5
), p.
051801
.
19.
Chen
,
Z.
,
Qian
,
P.
,
Huang
,
Z.
,
Zhang
,
W.
, and
Liu
,
M.
,
2023
, “
Study on Flow and Heat Transfer of Liquid Metal in the Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
183
, p.
107840
.
20.
Khan
,
Y.
,
Sarowar
,
M. T.
,
Mobarrat
,
M.
, and
Rahman
,
M. H.
,
2022
, “
Performance Comparison of a Microchannel Heat Sink Using Different Nano-Liquid Metal Fluid Coolant: A Numerical Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091014
.
21.
Luo
,
M.
, and
Liu
,
J.
,
2013
, “
Experimental Investigation of Liquid Metal Alloy Based Mini-Channel Heat Exchanger for High Power Electronic Devices
,”
Front. Energy
,
7
(
4
), pp.
479
486
.
22.
Pourghasemi
,
M.
,
Fathi
,
N.
, and
Rodriguez
,
S.
,
2021
, “
Numerical Study on Flow and Heat Transfer of Water and Liquid Metals Within Micro-Scale Heat Sinks for High Heat Dissipation Rate Applications
,” arXiv preprint arXiv:2106.11752.
23.
Xiang
,
X.
,
Yang
,
J.
,
Fan
,
A.
, and
Liu
,
W.
,
2018
, “
A Comparison Between Cooling Performances of Water-Based and Gallium-Based Micro-Channel Heat Sinks With the Same Dimensions
,”
Appl. Therm. Eng.
,
137
, pp.
1
10
.
24.
Luo
,
C.
,
Huang
,
Z.
,
Zhu
,
X.
,
Qian
,
P.
, and
Liu
,
M.
,
2021
, “
Flow and Heat Transfer Characteristics of Liquid Metal Sodium in Tubes With Different Inner Wall Structures
,”
IOP Conf. Ser.: Earth Environ. Sci..
,
621
(
1
), p.
012028
.
25.
Difonzo
,
R.
,
Gajetti
,
E.
,
Savoldi
,
L.
, and
Fathi
,
N.
,
2022
, “
Assessment of Different RANS Turbulence Models in Mini-Channels for the Cooling of MW-Class Gyrotron Resonators
,”
Int. J. Heat Mass Transfer
,
193
, p.
122922
.
26.
Zhang
,
X. D.
,
Li
,
X. P.
,
Zhou
,
Y. X.
,
Yang
,
J.
, and
Liu
,
J.
,
2019
, “
Vascularized Liquid Metal Cooling for Thermal Management of KW High Power Laser Diode Array
,”
Appl. Therm. Eng.
,
162
, p.
114212
.
27.
Liu
,
J.
,
He
,
Y.
, and
Lei
,
X.
,
2019
, “
Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube With a Nonuniform Heat Flux
,”
Energies
,
12
(
8
), p.
1432
.
28.
Limia
,
A.
,
Ha
,
J. M.
,
Kottke
,
P.
,
Gunawan
,
A.
,
Fedorov
,
A. G.
,
Lee
,
S. W.
, and
Yee
,
S. K.
,
2017
, “
A Dual-Stage Sodium Thermal Electrochemical Converter (Na-TEC)
,”
J. Power Sources
,
371
, pp.
217
224
.
29.
Ansys Fluent Theory Guide, 2021,
ANSYS Inc.
,
USA
, pp.
724
746
.
30.
Bobkov
,
V.
,
2008
,
Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data International
,
Atomic Energy Agency
,
Vienna
.
31.
Dash
,
S. M.
, and
Sahoo
,
S.
,
2019
, “
A Study on Natural Convection in a Cold Square Enclosure With Two Vertical Eccentric Square Heat Sources Using the IB–LBM Scheme
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051013
.
32.
Talanov
,
V. D.
, and
Ushakov
,
P. A.
,
1967
, “
Part One Heat Transfer in Round, Annular and Square Channels Study of Heat Transfer in Liquid Metals in Round Pipes
,”
Liquid Met.
, p.
1
.
33.
Lorenzin
,
N.
, and
Abánades
,
A.
,
2013
, “
A Review on the Application of Liquid Metals as Heat Transfer Fluid in Concentrated Solar Power Technologies
,”
Int. J. Hydrogen Energy
,
93
(
17
), pp.
6990
6995
.
34.
Mikityuk
,
K.
,
2009
, “
Heat Transfer to Liquid Metal: Review of Data and Correlations for Tube Bundles
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
680
687
.
35.
Cheng
,
X.
, and
Tak
,
N. I.
,
2006
, “
Investigation on Turbulent Heat Transfer to Lead-Bismuth Eutectic Flows in Circular Tubes for Nuclear Applications
,”
Nucl. Eng. Des.
,
236
(
4
), pp.
385
393
.
36.
Grötzbach
,
G.
,
2013
, “
Challenges in Low-Prandtl Number Heat Transfer Simulation and Modelling
,”
Nucl. Eng. Des.
,
264
, pp.
41
55
.
37.
Aoki
,
S.
,
1963
, “
A Consideration on the Heat Transfer in Liquid Metal
,”
Bull. Tokyo Inst. Technol.
,
54
.
38.
White
,
F.
,
2008
,
Fluid Mechanics
,
McGraw Hill
,
New York
.
39.
Zohuri
,
B.
, and
Fathi
,
N.
,
2015
,
Thermal-Hydraulic Analysis of Nuclear Reactors
,
Springer
,
New York
.
40.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
13
(
5
), p.
051702
.
41.
Rashidi
,
S.
,
Akbarzadeh
,
M.
,
Masoodi
,
R.
, and
Languri
,
E. M.
,
2017
, “
Thermal-Hydraulic and Entropy Generation Analysis for Turbulent Flow Inside a Corrugated Channel
,”
Int. J. Heat Mass Transfer
,
109
, pp.
812
823
.
You do not currently have access to this content.