Abstract

An infrared suppression (IRS) device is integral to any gas turbine used in naval and cargo ships. Estimating an IRS device’s cooling characteristics is essential to start the maintenance operation. Thus, this article presents a computational investigation of the cooling characteristics of an infrared suppression device with a single cylindrical funnel with or without circular perforations. All simulations have been carried out in a steady and laminar environment. The numerical procedure adopted in this work has been validated with the existing correlations and achieved satisfactory agreement. The effect of the Rayleigh number and the length-to-diameter ratio of the funnel have been varied within the practical range to observe their effects on the averaged Nusselt number, heat transfer rate, mass suction rate, velocity fields, and thermal plumes. Moreover, the cooling performance has been compared for funnels without and with circular perforations. It is observed that the average Nu and the heat transfer rate increase with an increase in the Ra. Conversely, the average Nu first increases and then reduces with an increase in L/D. On the contrary, the heat transfer rate decreases monotonically with an increase in the L/D. The suction of fresh air into the funnel increases with Ra, whereas it reduces with an increase in L/D. The perforated funnels have better heat dissipation capacity than the unperforated ones.

References

1.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Devices
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.
2.
Mishra
,
D. P.
, and
Dash
,
S. K.
,
2010
, “
Numerical Investigation of Air Suction Through the Louvers of a Funnel Due to High Velocity Air Jet
,”
Comput. Fluids
,
39
(
9
), pp.
1597
1608
.
3.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Comparison Between a Conventional and a New IRS Device in Terms of Air Entrainment: An Experimental and Numerical Analysis
,”
J. Sh. Res.
,
64
(
4
), pp.
357
371
.
4.
Chandrakar
,
V.
,
Mukherjee
,
A.
,
Senapati
,
J. R.
, and
Barik
,
A. K.
,
2022
, “
Conjugate Free Convection Heat Transfer and Thermodynamic Analysis of Infrared Suppression Device With Cylindrical Funnels
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
4
), p.
042603
.
5.
Mohanty
,
A.
,
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Cooling of an Infrared Suppression Device (IRS) with Conical Funnels—a Computational Approach
,”
Int. Commun. Heat Mass Transfer
,
118
, pp.
1
13
.
6.
Mohanty
,
A.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2019
, “
Natural Convection Cooling of an Infrared Suppression (IRS) Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
141
, pp.
103
113
.
7.
Ghandouri
,
E. I.
,
Anas El
,
M.
,
Saadeddine
,
S.
, and
Meziane
,
M.
,
2020
, “
Design and Numerical Investigations of Natural Convection Heat Transfer of a New Rippling Fin Shape
,”
Appl. Therm. Eng.
,
178
, pp.
1
14
.
8.
Karlapalem
,
V.
, and
Dash
,
S. K.
,
2021
, “
Design of Perforated Branching Fins in Laminar Natural Convection
,”
Int. Commun. Heat Mass Transfer
,
120
, pp.
1
17
.
9.
Zhang
,
K.
,
Li
,
M.
,
Wang
,
F.
, and
He
,
Y.
,
2020
, “
Experimental and Numerical Investigation of Natural Convection Heat Transfer of W-Type Fin Arrays
,”
Int. J. Heat Mass Transfer
,
152
, pp.
1
13
.
10.
Ghandouri
,
E. I.
,
Anas El
,
M.
,
Saadeddine
,
S.
, and
Meziane
,
M.
,
2021
, “
Thermal Performance of a Corrugated Heat Dissipation Fin Design: A Natural Convection Numerical Analysis
,”
Int. J. Heat Mass Transfer
,
180
, pp.
1
18
.
11.
Abbas
,
A.
,
Muneeshwaran
,
M.
, and
Wang
,
C.
,
2021
, “
Performance of Displaced Fin Heat Sink in Natural Convection Subject to Upward and Downward Arrangement
,”
Int. J. Therm. Sci.
,
162
, pp.
1
12
.
12.
Abbas
,
A.
, and
Wang
,
C. C.
,
2020
, “
Augmentation of Natural Convection Heat Sink via Using Displacement Design
,”
Int. J. Heat Mass Transfer
,
154
, pp.
1
14
.
13.
Nemati
,
H.
,
Moradaghay
,
M.
,
Moghimi
,
M. A.
, and
Meyer
,
J. P.
,
2020
, “
Natural Convection Heat Transfer Over Horizontal Annular Elliptical Finned Tubes
,”
Int. Commun. Heat Mass Transfer
,
118
, pp.
1
10
.
14.
Ray
,
R.
,
Mohanty
,
A.
,
Patro
,
P.
, and
Tripathy
,
K. C.
,
2022
, “
Performance Enhancement of Heat Sink With Branched and Interrupted Fins
,”
Int. Commun. Heat Mass Transfer
,
133
, pp.
1
11
.
15.
Rana
,
B. K.
,
2022
, “
Conjugate Steady Natural Convection Analysis Around Thick Tapered Vertical Pipe Suspended in the Air
,”
Sadhana - Acad. Proc. Eng. Sci.
,
47
(
1
), pp.
1
16
.
16.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
3-D Numerical Investigation on Buoyancy-Induced Flow and Heat Transfer From a Hollow Horizontal Steel Cylinder with Finite Wall Thickness
,”
Numer. Heat Transfer Part A Appl.
,
78
(
6
), pp.
252
275
.
17.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Heat Transfer and Fluid Flow Around a Thick Hollow Vertical Cylinder Suspended in Air: A Numerical Approach
,”
Int. J. Therm. Sci.
,
152
, pp.
1
16
.
18.
Sheremet
,
M. A.
,
2011
, “
Numerical Simulation of Conjugate Natural Convection in an Inclined Cylinder
,”
Heat Transfer Res.
,
42
(
5
), pp.
473
485
.
19.
Hampel
,
C.
,
Crowder
,
H.
, and
Dillon
,
H.
,
2019
, “
Study of Laminar Natural Convection of an Isothermal Vertical Plate Using Schlieren Photography and Numerical Methods
,”
Heat Transfer Res.
,
50
(
6
), pp.
565
580
.
20.
Seo
,
M. Y.
,
Ha
,
Y. M.
, and
Park
,
Y. G.
,
2018
, “
The Effect of Four Elliptical Cylinders With Different Aspect Ratios on the Natural Convection Inside a Square Enclosure
,”
Int. J. Heat Mass Transfer
,
122
, pp.
491
503
.
21.
Elatar
,
A.
,
Teamah
,
M. A.
, and
Hassab
,
M. A.
,
2016
, “
Numerical Study of Laminar Natural Convection Inside Square Enclosure With Single Horizontal Fin
,”
Int. J. Therm. Sci.
,
99
, pp.
41
51
.
22.
Park
,
Y. G.
,
Ha
,
M. Y.
, and
Park
,
J.
,
2015
, “
Natural Convection in a Square Enclosure With Four Circular Cylinders Positioned at Different Rectangular Locations
,”
Int. J. Heat Mass Transfer
,
81
, pp.
490
511
.
23.
Liu
,
Y.
,
Lei
,
C.
, and
Patterson
,
J. C.
,
2014
, “
Natural Convection in a Differentially Heated Cavity With Two Horizontal Adiabatic Fins on the Sidewalls
,”
Int. J. Heat Mass Transfer
,
72
, pp.
23
36
.
24.
Pandey
,
S.
,
Park
,
Y. G.
, and
Ha
,
M. Y.
,
2019
, “
An Exhaustive Review of Studies on Natural Convection in Enclosures With and Without Internal Bodies of Various Shapes
,”
Int. J. Heat Mass Transfer
,
138
, pp.
762
795
.
25.
Das
,
D.
,
Roy
,
M.
, and
Basak
,
T.
,
2017
, “
Studies on Natural Convection Within Enclosures of Various (Non-Square) Shapes—A Review
,”
Int. J. Heat Mass Transfer
,
106
, pp.
356
406
.
26.
Chandrakar
,
V.
,
Mukherjee
,
A.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2022
, “
Conjugate Free Convection With Surface Radiation From Real-Scale IRS System With Multiple Conical Funnels: A Numerical Analysis
,”
Int. Commun. Heat Mass Transfer
,
134
, pp.
1
14
.
27.
Chandrakar
,
V.
,
Mukherjee
,
A.
, and
Senapati
,
J. R.
,
2022
, “
Free Convection Heat Transfer With Surface Radiation From Infrared Supression System and Estimation of Cooling Time
,”
Therm. Sci. Eng. Prog.
,
33
, pp.
1
15
.
28.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Pressure Recovery and Acceleration Length of Gas-Solid Suspension in an Abrupt Expansion—An Eulerian-Eulerian Approach
,”
Chem. Eng. Sci.
,
226
, pp.
1
20
.
29.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2021
, “
Gas–Solid Flow in a Diffuser: Effect of Inter-Particle and Particle–Wall Collisions
,”
Particuology
,
57
, pp.
187
200
.
30.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2021
, “
Dilute Gas-Particle Suspension in a Diffuser: A Two-Fluid Modelling Approach
,”
Can. J. Chem. Eng.
,
100
, pp.
s72
s93
.
31.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Computation of Pressure Drop and Heat Transfer in Gas-Solid Suspension With Small Sized Particles in a Horizontal Pipe
,”
Part. Sci. Technol.
,
38
(
8
), pp.
985
998
.
32.
Senapati
,
S. K.
, and
Dash
,
S. K.
,
2020
, “
Dilute Gas-Particle Flow Through Thin and Thick Orifice: A Computational Study Through Two Fluid Model
,”
Part. Sci. Technol.
,
38
(
6
), pp.
711
725
.
33.
Hassani
,
A. V.
, and
Hollands
,
K. G. T.
,
1989
, “
On Natural Convection Heat Transfer From Three-Dimensional Bodies of Arbitrary Shape
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
2
), pp.
363
371
.
34.
Lee
,
H. R.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Natural Convection Along Slender Vertical Cylinders With Variable Surface Temperature
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
1
), pp.
103
108
.
You do not currently have access to this content.