Abstract

Raw biogas has the potential to be a valuable solution to the world’s insatiable energy demand as well as reduce waste and greenhouse gas emissions. This study investigates the raw biogas interchangeability potential of a circular porous radiant burner (PRB) made of Silicon Carbide (SiC) foam and ceramic. The experiment was carried out on PRB for three different raw biogas mixtures at the firing rate of 200–400 kW/m2 and stable combustion was observed for the equivalence ratio range of 0.75–0.96. The raw biogas mixtures of higher CO2 percentage reduce the surface temperature, radiation efficiency, NOx emission but increase the CO emission. The surface temperature, CO, and NOx emission increased due to the increase in firing rate and equivalence ratio, but the radiation efficiency increased due to the increase in equivalence ratio only. The PRB operates steadily with the radiation efficiency of 15.87–38.92%, NOx emission of 0.7–2.9 ppm, and CO emission of 30–93 ppm for all studied raw biogas mixtures within the range of firing rates of 200–400 kW/m2 and equivalence ratio of 0.75–0.96. A correlation for radiation efficiency in terms of percentage of CO2 in the raw biogas mixtures, firing rate, and equivalence ratio was developed and found that the predicted radiation efficiency agrees well with the experimental results. Overall, the newly developed PRB offers better radiation efficiency than that of other designs operated in the submerged mode for raw biogas.

References

1.
Ray
,
R.
, and
Jana
,
T. K.
,
2017
, “
Carbon Sequestration by Mangrove Forest: One Approach for Managing Carbon Dioxide Emission From Coal-Based Power Plant
,”
Atmos. Environ.
,
171
, pp.
149
154
.
2.
Rosha
,
P.
,
Dhir
,
A.
, and
Mohapatra
,
S. K.
,
2018
, “
Influence of Gaseous Fuel Induction on the Various Engine Characteristics of a Dual Fuel Compression Ignition Engine: A Review
,”
Renewable Sustainable Energy Rev.
,
82
(
14
), pp.
3333
3349
.
3.
Kapoor
,
R.
,
Ghosh
,
P.
,
Kumar
,
M.
, and
Vijay
,
V. K.
,
2019
, “
Evaluation of Biogas Upgrading Technologies and Future Perspectives: A Review
,”
Environ. Sci. Pollut. Res.
,
26
(
12
), pp.
11631
11661
.
4.
Pantangi
,
V. K.
,
Mishra
,
S. C.
,
Muthukumar
,
P.
, and
Reddy
,
R.
,
2011
, “
Studies on Porous Radiant Burners for LPG (Liquefied Petroleum Gas) Cooking Applications
,”
Energy
,
36
(
10
), pp.
6074
6080
.
5.
Mishra
,
N. K.
, and
Muthukumar
,
P.
,
2018
, “
Development and Testing of Energy Efficient and Environment Friendly Porous Radiant Burner Operating on Liquefied Petroleum Gas
,”
Appl. Therm. Eng.
,
129
, pp.
482
489
.
6.
Weinberg
,
F. J.
,
1971
, “
Combustion Temperatures: The Future?
,”
Nature
,
233
(
5317
), pp.
239
241
.
7.
Mishra
,
N. K.
,
Mishra
,
S. C.
, and
Muthukumar
,
P.
,
2015
, “
Performance Characterization of a Medium-Scale Liquefied Petroleum Gas Cooking Stove With a Two-Layer Porous Radiant Burner
,”
Appl. Therm. Eng.
,
89
, pp.
44
50
.
8.
Hsu
,
P. F.
,
Evans
,
W. D.
, and
Howell
,
J. R.
,
1993
, “
Experimental and Numerical Study of Premixed Combustion Within Nonhomogeneous Porous Ceramics
,”
Combust. Sci. Technol.
,
90
(
1–4
), pp.
149
172
.
9.
Khanna
,
V.
,
Goel
,
R.
, and
Ellzey
,
J. L.
,
1994
, “
Measurements of Emissions and Radiation for Methane Combustion Within a Porous Medium Burner
,”
Combust. Sci. Technol.
,
99
(
1–3
), pp.
133
142
.
10.
Zhou
,
X. Y.
, and
Pereira
,
J. C. F.
,
1997
, “
Numerical Study of Combustion and Pollutants Formation in Inert Nonhomogeneous Porous Media
,”
Combust. Sci. Technol.
,
130
(
1–6
), pp.
335
364
.
11.
Mathis
,
W. M.
, and
Ellzey
,
J. L.
,
2003
, “
Flame Stabilization, Operating Range, and Emissions for a Methane/Air Porous Burner
,”
Combust. Sci. Technol.
,
175
(
5
), pp.
825
839
.
12.
Smucker
,
M. T.
, and
Ellzey
,
J. L.
,
2004
, “
Computational and Experimental Study of a Two-Section Porous Burner
,”
Combust. Sci. Technol.
,
176
(
8
), pp.
1171
1189
.
13.
Marbach
,
T. L.
, and
Agrawal
,
A. K.
,
2005
, “
Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
307
313
.
14.
VogeL
,
B. J.
, and
Ellzey
,
J. L.
,
2005
, “
Subadiabatic and Superadiabatic Performance of a Two-Section Porous Burner
,”
Combust. Sci. Technol.
,
177
(
7
), pp.
1323
1338
.
15.
Qu
,
Z.
,
Gao
,
H.
,
Feng
,
X.
, and
Tao
,
W.
,
2015
, “
Premixed Combustion in a Porous Burner With Different Fuels
,”
Combust. Sci. Technol.
,
187
(
3
), pp.
489
504
.
16.
Keramiotis
,
C.
,
Stelzner
,
B.
,
Trimis
,
D.
, and
Founti
,
M.
,
2012
, “
Porous Burners for Low Emission Combustion: An Experimental Investigation
,”
Energy
,
45
(
1
), pp.
213
219
.
17.
Charoensuk
,
J.
, and
Lapirattanakun
,
A.
,
2011
, “
On Flame Stability, Temperature Distribution and Burnout of Air-Staged Porous Media Combustor Firing LPG With Different Porosity and Excess Air
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3125
3141
.
18.
Abdelaal
,
M. M.
,
El-Riedy
,
M. K.
, and
El-Nahas
,
A. M.
,
2013
, “
Effect of Oxygen Enriched Air on Porous Radiant Burner Performance and NO Emissions
,”
Exp. Therm. Fluid. Sci.
,
45
, pp.
163
168
.
19.
Muthukumar
,
P.
, and
Shyamkumar
,
P. I.
,
2013
, “
Development of Novel Porous Radiant Burners for LPG Cooking Applications
,”
Fuel
,
112
, pp.
562
566
.
20.
Kaushik
,
L. K.
, and
Muthukumar
,
P.
,
2018
, “
Life Cycle Assessment (LCA) and Techno-Economic Assessment (TEA) of Medium Scale (5–10 kW) LPG Cooking Stove With Two-Layer Porous Radiant Burner
,”
Appl. Therm. Eng.
,
133
, pp.
316
326
.
21.
Zheng
,
C. H.
,
Cheng
,
L. M.
,
Li
,
T.
,
Luo
,
Z. Y.
, and
Cen
,
K. F.
,
2010
, “
Filtration Combustion Characteristics of Low Calorific Gas in SiC Foams
,”
Fuel
,
89
(
9
), pp.
2331
2337
.
22.
Gao
,
H.
,
Qu
,
Z.
,
Tao
,
W.
,
He
,
Y.
, and
Zhou
,
J.
,
2011
, “
Experimental Study of Biogas Combustion in a Two-Layer Packed Bed Burner
,”
Energy Fuels
,
25
(
7
), pp.
2887
2895
.
23.
Francisco
,
R. W.
, Jr.
,
Rua
,
F.
,
Costa
,
M.
,
Catapan
,
R. C.
, and
Oliveira
,
A. A. M.
,
2010
, “
On the Combustion of Hydrogen-Rich Gaseous Fuels With Low Calorific Value in a Porous Burner
,”
Energy Fuels
,
24
(
2
), pp.
880
887
.
24.
Keramiotis
,
C.
, and
Founti
,
M. A.
,
2013
, “
An Experimental Investigation of Stability and Operation of a Biogas Fueled Porous Burner
,”
Fuel
,
103
, pp.
278
284
.
25.
Keramiotis
,
C.
,
Katoufa
,
M.
,
Vourliotakis
,
G.
,
Hatziapostolou
,
A.
, and
Founti
,
M. A.
,
2015
, “
Experimental Investigation of a Radiant Porous Burner Performance With Simulated Natural Gas, Biogas and Synthesis Gas Fuel Blends
,”
Fuel
,
158
, pp.
835
842
.
26.
Song
,
F.
,
Wen
,
Z.
,
Dong
,
Z.
,
Wang
,
E.
, and
Liu
,
X.
,
2017
, “
Ultra-Low Calorific Gas Combustion in a Gradually-Varied Porous Burner With Annular Heat Recirculation
,”
Energy
,
119
, pp.
497
503
.
27.
Devi
,
S.
,
Sahoo
,
N.
, and
Muthukumar
,
P.
,
2020
, “
Experimental Studies on Biogas Combustion in a Novel Double Layer Inert Porous Radiant Burner
,”
Renewable Energy
,
149
, pp.
1040
1052
.
28.
Habib
,
R.
,
Yadollahi
,
B.
,
Saeed
,
A.
,
Doranehgard
,
M. H.
,
Li
,
L. K.
, and
Karimi
,
N.
,
2021
, “
Unsteady Ultra-Lean Combustion of Methane and Biogas in a Porous Burner—An Experimental Study
,”
Appl. Therm. Eng.
,
182
, p.
116099
.
29.
Maznoy
,
A.
,
Pichugin
,
N.
,
Yakovlev
,
I.
,
Fursenko
,
R.
,
Petrov
,
D.
, and
Shy
,
S. S.
,
2021
, “
Fuel Interchangeability for Lean Premixed Combustion in Cylindrical Radiant Burner Operated in the Internal Combustion Mode
,”
Appl. Therm. Eng.
,
186
, p.
115997
.
30.
Voegeli
,
Y.
,
Lohri
,
C.
,
Kassenga
,
G.
,
Baier
,
U.
, and
Zurbrügg
,
C.
,
2009
, “
Technical and Biological Performance of the Arti Compact Biogas Plant for Kitchen Waste-Case Study From Tanzania
,”
Proceedings Sardinia
.
31.
Algapani
,
D. E.
,
Qiao
,
W.
,
Ricci
,
M.
,
Bianchi
,
D.
,
Wandera
,
S. M.
,
Adani
,
F.
, and
Dong
,
R.
,
2019
, “
Bio-Hydrogen and Bio-Methane Production From Food Waste in a Two-Stage Anaerobic Digestion Process With Digestate Recirculation
,”
Renewable Energy
,
130
(
c
), pp.
1108
1115
.
32.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
33.
Abnisa
,
F.
,
Daud
,
W. W.
, and
Sahu
,
J. N.
,
2011
, “
Optimization and Characterization Studies on Bio-Oil Production From Palm Shell by Pyrolysis Using Response Surface Methodology
,”
Biomass Bioenergy
,
35
(
8
), pp.
3604
3616
.
34.
Naik
,
B. K.
, and
Muthukumar
,
P.
,
2019
, “
Experimental Investigation and Parametric Studies on Structured Packing Chamber Based Liquid Desiccant Dehumidification and Regeneration Systems
,”
Build. Environ.
,
149
, pp.
330
348
.
You do not currently have access to this content.