Abstract

Nanoliquid impingement heat transfer with a phase change material (PCM) installed radial system is considered. The study is performed by using the finite element method for various values of Reynolds numbers (100 ≤ Re ≤ 300), height of PCM (0.25H ≤ hpcm ≤ 0.75H), and plate spacing (0.15H ≤ hs ≤ 0.40H). Different configurations using water, nanoliquid, and nanoliquid + PCM are compared in terms of heat transfer improvement. Thermal performance is improved by using PCM, while best performance is achieved with nanoliquid and PCM-installed configuration. At Re = 100 and Re = 300, heat transfer improvements of 26% and 25.5% are achieved with the nanoliquid + PCM system as compared to water without PCM. The height of the PCM layer also influences the heat transfer dynamic behavior, while there is 12.6% variation in the spatial average heat transfer of the target surface with the lowest and highest PCM heights while discharging time increases by about 76.5%. As the spacing between the plates decreases, average heat transfer rises and there is 38% variation.

References

1.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
064001
.
2.
Chen
,
Z.
,
Shahsavar
,
A.
,
Al-Rashed
,
A. A.
, and
Afrand
,
M.
,
2020
, “
The Impact of Sonication and Stirring Durations on the Thermal Conductivity of Alumina-Liquid Paraffin Nanofluid: An Experimental Assessment
,”
Powder. Technol.
,
360
, pp.
1134
1142
.
3.
Oztop
,
H. F.
,
Varol
,
Y.
,
Koca
,
A.
,
Firat
,
M.
,
Turan
,
B.
, and
Metin
,
I.
,
2011
, “
Experimental Investigation of Cooling of Heated Circular Disc Using Inclined Circular Jet
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
990
1001
.
4.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.
5.
Nadda
,
R.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2018
, “
Efficiency Improvement of Solar Photovoltaic/Solar Air Collectors by Using Impingement Jets: A Review
,”
Renewable. Sustainable. Energy. Rev.
,
93
, pp.
331
353
.
6.
Dewan
,
A.
,
Dutta
,
R.
, and
Srinivasan
,
B.
,
2012
, “
Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer
,”
Heat. Transfer. Eng.
,
33
(
4–5
), pp.
447
460
.
7.
Garimella
,
S. V.
,
2000
, “
Heat Transfer and Flow Fields in Confined Jet Impingement
,”
Annu. Rev. Heat Transfer
,
11
, pp.
413
494
.
8.
Maghrabie
,
H. M.
,
2021
, “
Heat Transfer Intensification of Jet Impingement Using Exciting Jets-A Comprehensive Review
,”
Renewable. Sustainable. Energy. Rev.
,
139
, p.
110684
.
9.
Babar
,
H.
, and
Ali
,
H. M.
,
2019
, “
Airfoil Shaped Pin-Fin Heat Sink: Potential Evaluation of Ferric Oxide and Titania Nanofluids
,”
Energy. Convers. Manage.
,
202
, p.
112194
.
10.
Chamkha
,
A. J.
,
Molana
,
M.
,
Rahnama
,
A.
, and
Ghadami
,
F.
,
2018
, “
On the Nanofluids Applications in Microchannels: A Comprehensive Review
,”
Powder. Technol.
,
332
, pp.
287
322
.
11.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2020
, “
Magnetohydrodynamic Natural Convection Heat Transfer of Hybrid Nanofluid in a Square Enclosure in the Presence of a Wavy Circular Conductive Cylinder
,”
ASME J. Thermal Sci. Eng. Appl.
,
12
(
3
), p.
031009
.
12.
Rashad
,
A. M.
,
Chamkha
,
A. J.
,
Ismael
,
M. A.
, and
Salah
,
T.
,
2018
, “
Magnetohydrodynamics Natural Convection in a Triangular Cavity Filled With a Cu-Al2O3/Water Hybrid Nanofluid With Localized Heating From Below and Internal Heat Generation
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
7
), p.
072502
.
13.
Arshad
,
W.
, and
Ali
,
H. M.
,
2017
, “
Experimental Investigation of Heat Transfer and Pressure Drop in a Straight Minichannel Heat Sink Using TiO2 Nanofluid
,”
Int. J. Heat. Mass. Transfer.
,
110
, pp.
248
256
.
14.
Izadi
,
A.
,
Siavashi
,
M.
,
Rasam
,
H.
, and
Xiong
,
Q.
,
2020
, “
MHD Enhanced Nanofluid Mediated Heat Transfer in Porous Metal for CPU Cooling
,”
Appl. Therm. Eng.
,
168
, p.
114843
.
15.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semicircular Cavity
,”
ASME J. Thermal Sci. Eng. Appl.
,
9
(
4
), p.
041004
.
16.
Javed
,
S.
,
Ali
,
H. M.
,
Babar
,
H.
,
Khan
,
M. S.
,
Janjua
,
M. M.
, and
Bashir
,
M. A.
,
2020
, “
Internal Convective Heat Transfer of Nanofluids in Different Flow Regimes: A Comprehensive Review
,”
Physica A: Statist. Mech. Appl.
,
538
, p.
122783
.
17.
Baïri
,
A.
,
2019
, “
Experimental Study on Enhancement of Free Convective Heat Transfer in a Tilted Hemispherical Enclosure by Using Water-ZnO Nanofluid Saturated Porous Materials
,”
Appl. Therm. Eng.
,
148
, pp.
992
998
.
18.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Magnetohydrodynamic CuO–Water Nanofluid in a Porous Complex-Shaped Enclosure
,”
ASME J. Thermal Sci. Eng. Appl.
,
9
(
4
), p.
041007
.
19.
Taherian
,
H.
,
Alvarado
,
J. L.
, and
Languri
,
E. M.
,
2018
, “
Enhanced Thermophysical Properties of Multiwalled Carbon Nanotubes Based Nanofluids. Part 1: Critical Review
,”
Renewable. Sustainable. Energy. Rev.
,
82
(
3
), pp.
4326
4336
.
20.
Mahian
,
O.
,
Kolsi
,
L.
,
Amani
,
M.
,
Estellé
,
P.
,
Ahmadi
,
G.
,
Kleinstreuer
,
C.
,
Marshall
,
J. S.
, et al.,
2019
, “
Recent Advances in Modeling and Simulation of Nanofluid Flows-Part I: Fundamentals and Theory
,”
Phys. Rep.
,
790
, pp.
1
48
.
21.
Faraji
,
H.
,
Faraji
,
M.
, and
El Alami
,
M.
,
2020
, “
Numerical Survey of the Melting Driven Natural Convection Using Generation Heat Source: Application to the Passive Cooling of Electronics Using Nano-enhanced Phase Change Material
,”
ASME J. Thermal Sci. Eng. Appl.
,
12
(
2
), p.
021005
.
22.
Manca
,
O.
,
Mesolella
,
P.
,
Nardini
,
S.
, and
Ricci
,
D.
,
2011
, “
Numerical Study of a Confined Slot Impinging Jet With Nanofluids
,”
Nanoscale. Res. Lett.
,
6
, p.
188
.
23.
Mohammadpour
,
J.
, and
Lee
,
A.
,
2020
, “
Investigation of Nanoparticle Effects on Jet Impingement Heat Transfer: A Review
,”
J. Mol. Liq.
,
316
, p.
113819
.
24.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cu-Water Nanofluid
,”
Appl. Therm. Eng.
,
36
, pp.
426
433
.
25.
Naphon
,
P.
,
Wiriyasart
,
S.
,
Arisariyawong
,
T.
, and
Nakharintr
,
L.
,
2019
, “
A Numerical and Experimental Analysis on the Jet Impingement Nanofluids Flow and Heat Transfer Characteristics in the Micro-Channel Heat Sink
,”
Int. J. Heat. Mass. Transfer.
,
131
, pp.
329
340
.
26.
Barewar
,
S. D.
,
Tawri
,
S.
, and
Chougule
,
S. S.
,
2019
, “
Heat Transfer Characteristics of Free Nanofluid Impinging Jet on Flat Surface With Different Jet to Plate Distance: An Experimental Investigation
,”
Chem. Eng. Processing-Process Intensification
,
136
, pp.
1
10
.
27.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2020
, “
Al2O3-Water Nanofluid Jet Impingement Cooling With Magnetic Field
,”
Heat. Transfer. Eng.
,
41
(
1
), pp.
50
64
.
28.
Ahmadi
,
H.
,
Moghari
,
R. M.
,
Esmailpour
,
K.
, and
Mujumdar
,
A.
,
2016
, “
Numerical Investigation of Semi-Confined Turbulent Slot Jet Impingement on a Concave Surface Using an Al2O3–Water Nanofluid
,”
Appl. Math. Model.
,
40
(
2
), pp.
1110
1125
.
29.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2017
, “
Jet Impingement Cooling and Optimization Study for a Partly Curved Isothermal Surface with CuO-Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
89
, pp.
211
218
.
30.
Zahmatkesh
,
I.
, and
Ali Naghedifar
,
S.
,
2017
, “
Oscillatory Mixed Convection in the Jet Impingement Cooling of a Horizontal Surface Immersed in a Nanofluid-Saturated Porous Medium
,”
Numer. Heat Transfer, Part A: Appl.
,
72
(
5
), pp.
401
416
.
31.
Izadi
,
S.
,
Armaghani
,
T.
,
Ghasemiasl
,
R.
,
Chamkha
,
A. J.
, and
Molana
,
M.
,
2019
, “
A Comprehensive Review on Mixed Convection of Nanofluids in Various Shapes of Enclosures
,”
Powder. Technol.
,
343
, pp.
880
907
.
32.
Zahmatkesh
,
I.
, and
Naghedifar
,
S. A.
,
2018
, “
Pulsating Nanofluid Jet Impingement Onto a Partially Heated Surface Immersed in a Porous Layer
,”
Jordan J. Mech. Ind. Eng.
,
12
(
2
), pp.
99
107
.
33.
Buonomo
,
B.
,
Manca
,
O.
,
Bondareva
,
N. S.
, and
Sheremet
,
M. A.
,
2019
, “
Thermal and Fluid Dynamic Behaviors of Confined Slot Jets Impinging on An Isothermal Moving Surface with Nanofluids
,”
Energies
,
12
(
11
), p.
2074
.
34.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Cooling of a Partially Elastic Isothermal Surface by Nanofluids Jet Impingement
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
4
), p.
042205
.
35.
Faraji
,
H.
,
Benkaddour
,
A.
,
Oudaoui
,
K.
,
El Alami
,
M.
, and
Faraji
,
M.
,
2021
, “
Emerging Applications of Phase Change Materials: A Concise Review of Recent Advances
,”
Heat Transfer
,
50
(
2
), pp.
1443
1493
.
36.
Rostami
,
S.
,
Afrand
,
M.
,
Shahsavar
,
A.
,
Sheikholeslami
,
M.
,
Kalbasi
,
R.
,
Aghakhani
,
S.
,
Shadloo
,
M. S.
, and
Oztop
,
H. F.
,
2020
, “
A Review of Melting and Freezing Processes of PCM/nano-PCM and Their Application in Energy Storage
,”
Energy
,
211
, p.
118698
.
37.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2021
, “
Effects of Using a Porous Disk on the Dynamic Features of Phase Change Process With PCM Integrated Circular Pipe During Nano-Liquid Forced Convection in Discharging Operation Mode
,”
J. Taiwan Inst. Chem. Eng.
,
124
, pp.
381
390
.
38.
Faraji
,
H.
,
El Alami
,
M.
, and
Arshad
,
A.
,
2021
, “
Investigating the Effect of Single and Hybrid Nanoparticles on Melting of Phase Change Material in a Rectangular Enclosure With Finite Heat Source
,”
Int. J. Energy Res.
,
45
(
3
), pp.
4314
4330
.
39.
Leong
,
K. Y.
,
Rahman
,
M. R. A.
, and
Gurunathan
,
B. A.
,
2019
, “
Nano-Enhanced Phase Change Materials: A Review of Thermo-physical Properties, Applications and Challenges
,”
J. Energy Storage
,
21
, pp.
18
31
.
40.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2021
, “
Analysis of Hybrid Nanofluid and Surface Corrugation in the Laminar Convective Flow Through an Encapsulated PCM Filled Vertical Cylinder and POD-based Modeling
,”
Int. J. Heat. Mass. Transfer.
,
178
, p.
121623
.
41.
Darzi
,
A. A. R.
,
Jourabian
,
M.
, and
Farhadi
,
M.
,
2016
, “
Melting and Solidification of PCM Enhanced by Radial Conductive Fins and Nanoparticles in Cylindrical Annulus
,”
Energy. Convers. Manage.
,
118
, pp.
253
263
.
42.
Mousavi
,
S.
,
Siavashi
,
M.
, and
Heyhat
,
M. M.
,
2019
, “
Numerical Melting Performance Analysis of a Cylindrical Thermal Energy Storage Unit Using Nano-Enhanced PCM and Multiple Horizontal Fins
,”
Numer. Heat Transfer, Part A: Appl.
,
75
(
8
), pp.
560
577
.
43.
Sheikholeslami
,
M.
, and
Mahian
,
O.
,
2019
, “
Enhancement of PCM Solidification Using Inorganic Nanoparticles and an External Magnetic Field With Application in Energy Storage Systems
,”
J. Cleaner. Prod.
,
215
, pp.
963
977
.
44.
Mohammadnejad
,
F.
, and
Hossainpour
,
S.
,
2020
, “
A CFD Modeling and Investigation of a Packed Bed of High Temperature Phase Change Materials (PCMs) With Different Layer Configurations
,”
J. Energy Storage
,
28
, p.
101209
.
45.
Nield
,
D.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media, in Convection Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
46.
COMSOL AB
,
2018
,
COMSOL Multiphysics User's Guide, Stockholm, Sweden
.
47.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-fluid Heat Transfer Coefficients in Packed Beds: Correlation of Nusselt Numbers
,”
Chem. Eng. Sci.
,
34
(
3
), pp.
325
336
.
48.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), p.
014304
.
49.
Liu
,
F.
,
Cai
,
Y.
,
Wang
,
L.
, and
Zhao
,
J.
,
2018
, “
Effects of Nanoparticle Shapes on Laminar Forced Convective Heat Transfer in Curved Ducts Using Two-Phase Model
,”
Int. J. Heat. Mass. Transfer.
,
116
, pp.
292
305
.
50.
Arani
,
A. A. A.
,
Sadripour
,
S.
, and
Kermani
,
S.
,
2017
, “
Nanoparticle Shape Effects on Thermal-Hydraulic Performance of Boehmite Alumina Nanofluids in a Sinusoidal–Wavy Mini-Channel With Phase Shift and Variable Wavelength
,”
Int. J. Mech. Sci.
,
128
, pp.
550
563
.
51.
Ellahi
,
R.
,
Hassan
,
M.
, and
Zeeshan
,
A.
,
2015
, “
Shape Effects of Nanosize Particles in Cu–H2O Nanofluid on Entropy Generation
,”
Int. J. Heat. Mass. Transfer.
,
81
, pp.
449
456
.
52.
Manca
,
O.
,
Ricci
,
D.
,
Nardini
,
S.
, and
Di Lorenzo
,
G.
,
2016
, “
Thermal and Fluid Dynamic Behaviors of Confined Laminar Impinging Slot Jets With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
70
, pp.
15
26
.
53.
Chou
,
Y.
, and
Hung
,
Y.
,
1994
, “
Impingement Cooling of an Isothermally Heated Surface With a Confined Slot Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
2
), pp.
479
482
.
54.
Lamraoui
,
H.
,
Mansouri
,
K.
, and
Saci
,
R.
,
2019
, “
Numerical Investigation on Fluid Dynamic and Thermal Behavior of a Non-Newtonian Al2O3–Water Nanofluid Flow in a Confined Impinging Slot Jet
,”
J. Non-Newtonian. Fluid. Mech.
,
265
, pp.
11
27
.
55.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on An Isothermal Surface
,”
Int. J. Heat. Mass. Transfer.
,
45
(
6
), pp.
1237
1248
.
56.
Wolff
,
F.
, and
Viskanta
,
R.
,
1988
, “
Solidification of a Pure Metal At a Vertical Wall in the Presence of Liquid Superheat
,”
Int. J. Heat. Mass. Transfer.
,
31
(
8
), pp.
1735
1744
.
57.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velraj
,
R.
,
2007
, “
Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated With Constant/Varying (Solar) Heat Sources
,”
Renewable Energy
,
32
(
7
), pp.
1206
1227
.
58.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat. Mass. Transfer.
,
45
, pp.
1237
1248
.
You do not currently have access to this content.