Abstract

Since its invention nearly five decades ago, the loop heat pipe has revolutionized every application requiring cooling or maintaining a constant temperature environment. In this article, its various designs aspects are explored, which include design of the evaporator, wick, and selection of working fluid. Factors such as design guidelines and how they affect the physics of the overall system are surveyed. For the evaporator part, its various designs and their respective applications/operating ranges are reviewed. In the wick section, recent trends on its fabrication and performance enhancement are shown. A special section on how the wick functions is added, with a focus on the study of liquid–vapor meniscus using the thin-film evaporation theory. Attention is also given to the investigations on the various figures of merit used for the selection of the working fluid. For the first time, these figures of merit are categorized with respect to the device physics they represent/simulate. In the end, this review article also touches upon the various creative designs and ideas used to enhance the loop heat pipe performance.

References

1.
Gerasimov
,
Y. F.
,
Maidanik
,
Y. F.
,
Shchegolev
,
G. T.
,
Filippov
,
G. A.
,
Starikov
,
L. G.
,
Kiseev
,
V. M.
, and
Dolgirev
,
Y. E.
,
1975
, “
Low-Temperature Heat Pipes With Separate Channels for Vapor and Liquid
,”
J. Eng. Phys.
,
28
(
6
), pp.
683
685
.
2.
Lee
,
J.
,
Kim
,
D.
,
Mun
,
J.
, and
Kim
,
S.
,
2020
, “
Heat-Transfer Characteristics of a Cryogenic Loop Heat Pipe for Space Applications
,”
Energies
,
13
(
7
), p.
1616
.
3.
Zhao
,
Y.-n.
,
Yan
,
T.
,
Liang
,
J.
, and
Wang
,
N.
,
2019
, “
A New Way of Supercritical Startup of a Cryogenic Loop Heat Pipe
,”
Int. J. Heat. Mass. Transfer.
,
145
, p.
118793
.
4.
Guo
,
Y.
,
Lin
,
G.
,
He
,
J.
,
Zhang
,
H.
,
Miao
,
J.
, and
Li
,
J.
,
2019
, “
Supercritical Startup Strategy of Cryogenic Loop Heat Pipe With Different Working Fluids
,”
Appl. Therm. Eng.
,
155
, pp.
267
276
.
5.
Zhang
,
H.
,
Li
,
G.
,
Chen
,
L.
,
Man
,
G.
,
Miao
,
J.
,
Ren
,
X.
,
He
,
J.
, and
Huo
,
Y.
,
2019
, “
Development of Flat-plate Loop Heat Pipes for Spacecraft Thermal Control
,”
Microgravity Sci. Technol.
,
31
(
4
), pp.
435
443
.
6.
Wang
,
L.
,
Miao
,
J.
,
Gong
,
M.
,
Zhou
,
Q.
,
Liu
,
C.
,
Zhang
,
H.
, and
Fan
,
H.
,
2019
, “
Research on the Heat Transfer Characteristics of a Loop Heat Pipe Used as Mainline Heat Transfer Mode for Spacecraft
,”
J. Thermal Sci.
,
28
(
4
), pp.
736
744
.
7.
Beygzadeh
,
V.
,
Khalilarya
,
S.
, and
Mirzaee
,
I.
,
2020
, “
Thermodynamic Comparison of Two Novel Combined Systems Based on Solar Loop Heat Pipe Evaporator
,”
Energy
,
206
, p.
118145
.
8.
Zhao
,
Y.
,
Chang
,
S.
,
Yang
,
B.
,
Zhang
,
W.
, and
Leng
,
M.
,
2017
, “
Experimental Study on the Thermal Performance of Loop Heat Pipe for the Aircraft Anti-Icing System
,”
Int. J. Heat. Mass. Transfer.
,
111
, pp.
795
803
.
9.
Jang
,
J.-C.
,
Chi
,
R.-G.
,
Rhi
,
S.-H.
,
Lee
,
K.-B.
,
Hwang
,
H.-C.
,
Lee
,
J.-S.
, and
Lee
,
W.-H.
,
2015
, “
Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
,”
J. Electron. Mater.
,
44
(
6
), pp.
2039
2047
.
10.
Aono
,
Y.
,
Watanabe
,
N.
,
Ueno
,
A.
, and
Nagano
,
H.
,
2021
, “
Development of a Loop Heat Pipe With KW-Class Heat Transport Capability
,”
Appl. Therm. Eng.
,
183
, p.
116169
.
11.
Maydanik
,
Y.
,
Pastukhov
,
V.
, and
Chernysheva
,
M.
,
2018
, “
Development and Investigation of a Loop Heat Pipe With a High Heat-Transfer Capacity
,”
Appl. Therm. Eng.
,
130
, pp.
1052
1061
.
12.
Kiseev
,
V.
, and
Sazhin
,
O.
,
2017
, “
The First Ammonia Loop Heat Pipe: Long-Life Operation Test
,”
Int. J. Heat. Mass. Transfer.
,
115
, pp.
1085
1091
.
13.
Xie
,
Y.
,
Zhang
,
J.
,
Xie
,
L.
,
Yu
,
Y.
,
Wu
,
H.
,
Zhang
,
H.
, and
Gao
,
H.
,
2015
, “
Experimental Investigation on the Operating Characteristics of a Dual Compensation Chamber Loop Heat Pipe Subjected to Acceleration Field
,”
Appl. Therm. Eng.
,
81
, pp.
297
312
.
14.
Xie
,
Y.
,
Zhou
,
Y.
,
Wen
,
D.
,
Wu
,
H.
,
Haritos
,
G.
, and
Zhang
,
H.
,
2018
, “
Experimental Investigation on Transient Characteristics of a Dual Compensation Chamber Loop Heat Pipe Subjected to Acceleration Forces
,”
Appl. Therm. Eng.
,
130
, pp.
169
184
.
15.
Kumar
,
P.
,
Khandekar
,
S.
,
Maydanik
,
Y. F.
, and
Bhattacharya
,
B.
,
2019
, “
Effect of Vibrations on Thermal Performance of Miniature Loop Heat Pipe for Avionics Cooling: An Experimental Analysis
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
141
(
9
), p.
091814
.
16.
Xie
,
Y.
,
Li
,
X.
,
Han
,
L.
,
Zhu
,
J.
,
Gao
,
H.
, and
Wen
,
D.
,
2020
, “
Experimental Study on Operating Characteristics of a Dual Compensation Chamber Loop Heat Pipe in Periodic Acceleration Fields
,”
Appl. Therm. Eng.
,
176
, p.
115419
.
17.
Watanabe
,
N.
,
Phan
,
N.
,
Saito
,
Y.
,
Hayashi
,
S.
,
Katayama
,
N.
, and
Nagano
,
H.
,
2020
, “
Operating Characteristics of An Anti-Gravity Loop Heat Pipe With a Flat Evaporator that Has the Capability of a Loop Thermosyphon
,”
Energy. Convers. Manage.
,
205
, p.
112431
.
18.
Han
,
L.
,
Xie
,
Y.
,
Zhu
,
J.
,
Wu
,
H.
, and
Zhang
,
H.
,
2020
, “
Experimental and Analytical Study of Dual Compensation Chamber Loop Heat Pipe Under Acceleration Force Assisted Condition
,”
Int. J. Heat. Mass. Transfer.
,
153
, p.
119615
.
19.
Bai
,
L.
,
Tao
,
Y.
,
Guo
,
Y.
, and
Lin
,
G.
,
2020
, “
Startup Characteristics of a Dual Compensation Chamber Loop Heat Pipe With an Extended Bayonet Tube
,”
Int. J. Heat. Mass. Transfer.
,
148
, p.
119066
.
20.
Bai
,
L.
,
Fu
,
J.
,
Pang
,
L.
,
Tao
,
Y.
,
Lin
,
G.
, and
Wen
,
D.
,
2020
, “
Experimental Study on a Dual Compensation Chamber Loop Heat Pipe With Dual Bayonet Tubes
,”
Appl. Therm. Eng.
,
180
, p.
115821
.
21.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2010
, “
Operational Characteristics of the Miniature Loop Heat Pipe With Non-Condensable Gases
,”
Int. J. Heat. Mass. Transfer.
,
53
(
17–18
), pp.
3471
3482
.
22.
He
,
J.
,
Miao
,
J.
,
Bai
,
L.
,
Lin
,
G.
,
Zhang
,
H.
, and
Wen
,
D.
,
2017
, “
Effect of Non-Condensable Gas on the Startup of a Loop Heat Pipe
,”
Appl. Therm. Eng.
,
111
, pp.
1507
1516
.
23.
Anand
,
A.
,
2019
, “
Investigations on Effect of Non-Condensable Gas in a Loop Heat Pipe With Flat Evaporator on Deprime
,”
Int. J. Heat. Mass. Transfer.
,
143
, p.
118531
.
24.
Wang
,
H.
,
Lin
,
G.
,
Shen
,
X.
,
Bai
,
L.
, and
Wen
,
D.
,
2019
, “
Effect of Evaporator Tilt on a Loop Heat Pipe With Non-Condensable Gas
,”
Int. J. Heat. Mass. Transfer.
,
128
, pp.
1072
1080
.
25.
Wang
,
H.
,
Lin
,
G.
,
Shen
,
X.
,
Bai
,
L.
,
Yang
,
R.
, and
Wen
,
D.
,
2020
, “
Effect of Evaporator/Condenser Elevations on a Loop Heat Pipe With Non-Condensable Gas
,”
Appl. Therm. Eng.
,
180
, p.
115711
.
26.
Saidina
,
D.
,
Abdullah
,
M.
, and
Hussin
,
M.
,
2020
, “
Metal Oxide Nanofluids in Electronic Cooling: A Review
,”
J. Mater. Sci.: Mater. Electron.
,
31
(
6
), pp.
1
18
.
27.
Ramasamy
,
N. S.
,
Kumar
,
P.
,
Wangaskar
,
B.
,
Khandekar
,
S.
, and
Maydanik
,
Y. F.
,
2018
, “
Miniature Ammonia Loop Heat Pipe for Terrestrial Applications: Experiments and Modeling
,”
Int. J. Therm. Sci.
,
124
, pp.
263
278
.
28.
Cotter
,
T.
,
1984
, “
Principles and Prospects of Micro Heat Pipes
,”
Proceedings of the 5th International Heat Pipe Conference
,
Tsakuba, Japan
,
May 14–18
, pp.
328
335
.
29.
Maydanik
,
Y. F.
,
2005
, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
(
5–6
), pp.
635
657
.
30.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2007
, “
Parametric Analysis of Loop Heat Pipe Operation: A Literature Review
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
621
636
.
31.
Ambirajan
,
A.
,
Adoni
,
A. A.
,
Vaidya
,
J. S.
,
Rajendran
,
A. A.
,
Kumar
,
D.
, and
Dutta
,
P.
,
2012
, “
Loop Heat Pipes: A Review of Fundamentals, Operation, and Design
,”
Heat. Transfer. Eng.
,
33
(
4–5
), pp.
387
405
.
32.
Guo
,
H.
,
Ji
,
X.
, and
Xu
,
J.
,
2020
, “
Research and Development of Loop Heat Pipe–a Review
,”
Front. Heat and Mass Transfer (FHMT)
,
14
, pp.
1
16
.
33.
Maydanik
,
Y. F.
,
Chernysheva
,
M. A.
, and
Pastukhov
,
V.
,
2014
, “
Review: Loop Heat Pipes With Flat Evaporators
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
294
307
.
34.
Qu
,
Y.
,
Wang
,
S.
, and
Tian
,
Y.
,
2018
, “
A Review of Thermal Performance in Multiple Evaporators Loop Heat Pipe
,”
Appl. Therm. Eng.
,
143
, pp.
209
224
.
35.
Siedel
,
B.
,
Sartre
,
V.
, and
Lefèvre
,
F.
,
2015
, “
Literature Review: Steady-State Modelling of Loop Heat Pipes
,”
Appl. Therm. Eng.
,
75
, pp.
709
723
.
36.
Qu
,
J.
,
Wu
,
H.
,
Cheng
,
P.
,
Wang
,
Q.
, and
Sun
,
Q.
,
2017
, “
Recent Advances in MEMS-Based Micro Heat Pipes
,”
Int. J. Heat. Mass. Transfer.
,
110
, pp.
294
313
.
37.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Korukov
,
M. A.
, and
Ochterbeck
,
J. M.
,
2005
, “
Miniature Loop Heat Pipes—A Promising Means for Cooling Electronics
,”
IEEE Trans. Components Packaging Technol.
,
28
(
2
), pp.
290
296
.
38.
Bai
,
L.
,
Zhang
,
L.
,
Lin
,
G.
,
He
,
J.
, and
Wen
,
D.
,
2015
, “
Development of Cryogenic Loop Heat Pipes: A Review and Comparative Analysis
,”
Appl. Therm. Eng.
,
89
, pp.
180
191
.
39.
Cui
,
Y.
,
Zhu
,
J.
,
Zoras
,
S.
, and
Zhang
,
J.
,
2021
, “
Comprehensive Review of the Recent Advances in Pv/t System With Loop-Pipe Configuration and Nanofluid
,”
Renewable. Sustainable. Energy. Rev.
,
135
, p.
110254
.
40.
Su
,
Q.
,
Chang
,
S.
,
Zhao
,
Y.
,
Zheng
,
H.
, and
Dang
,
C.
,
2018
, “
A Review of Loop Heat Pipes for Aircraft Anti-Icing Applications
,”
Appl. Therm. Eng.
,
130
, pp.
528
540
.
41.
Brennan
,
P. J.
, and
Kroliczek
,
E. J.
,
1979
,
Heat Pipe Design Handbook: Volume I
,
NASA
.
42.
Hong
,
S.
,
Zhang
,
X.
,
Tang
,
Y.
,
Wang
,
S.
, and
Zhang
,
Z.
,
2016
, “
Experiment Research on the Effect of the Evaporator’s Configuration Design of an Innovative Ultra-Thin Looped Heat Pipe
,”
Int. J. Heat. Mass. Transfer.
,
92
, pp.
497
506
.
43.
Saaski
,
E. W.
,
1975
, “Investigation of an Inverted Meniscus Heat Pipe Wick Concept,” Technical Report,
NASA
,
USA
, Report NASA CR-133,724.
44.
Feldman
,
J. R. K.
, and
Noreen
,
D.
,
1980
, “
Design of Heat Pipe Cooled Laser Mirrors With an Inverted Meniscus Evaporator Wick
,”
18th Aerospace Sciences Meeting
,
Pasadena, CA
,
Jan. 14–16
, p.
148
.
45.
Wulz
,
H.
, and
Embacher
,
E.
,
1990
, “
Capillary Pumped Loops for Space Applications-Experimental and Theoretical Studies on the Performance of Capillary Evaporator Designs
,”
5th Joint Thermophysics and Heat Transfer Conference
,
Seattle, WA
,
June 18–20
, p.
1739
.
46.
Kiseev
,
V. M.
,
Vlassov
,
V. V.
, and
Muraoka
,
I.
,
2010
, “
Optimization of Capillary Structures for Inverted Meniscus Evaporators of Loop Heat Pipes and Heat Switches
,”
Int. J. Heat. Mass. Transfer.
,
53
(
9–10
), pp.
2143
2148
.
47.
Kiseev
,
V. M.
,
Vlassov
,
V. V.
, and
Muraoka
,
I.
,
2010
, “
Experimental Optimization of Capillary Structures for Loop Heat Pipes and Heat Switches
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1312
1319
.
48.
Demidov
,
A.
, and
Yatsenko
,
E.
,
1994
, “
Investigation of Heat and Mass Transfer in the Evaporation Zone of a Heat Pipe Operating by the ‘Inverted Meniscus’ Principle
,”
Int. J. Heat. Mass. Transfer.
,
37
(
14
), pp.
2155
2163
.
49.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1995
, “
Heat Transfer in the Inverted Meniscus Type Evaporator at High Heat Fluxes
,”
Int. J. Heat. Mass. Transfer.
,
38
(
16
), pp.
3091
3101
.
50.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1996
, “
Estimation of the Maximum Heat Flux in the Inverted Meniscus Type Evaporator of a Flat Miniature Heat Pipe
,”
Int. J. Heat. Mass. Transfer.
,
39
(
9
), pp.
1899
1909
.
51.
Ren
,
C.
,
Wu
,
Q.-S.
, and
Hu
,
M.-B.
,
2007
, “
Heat Transfer With Flow and Evaporation in Loop Heat Pipe’s Wick at Low or Moderate Heat Fluxes
,”
Int. J. Heat. Mass. Transfer.
,
50
(
11–12
), pp.
2296
2308
.
52.
Anand
,
A.
,
Ambirajan
,
A.
, and
Dutta
,
P.
,
2020
, “
Investigations on Vapour Blanket Formation Inside Capillary Wick of Loop Heat Pipe
,”
Int. J. Heat. Mass. Transfer.
,
156
, p.
119685
.
53.
Riffat
,
S.
, and
Ma
,
X.
,
2007
, “
Recent Developments in Heat Pipe Technology and Applications: A Review
,”
Int. J. Low-carbon Technol.
,
2
(
2
), pp.
162
177
.
54.
Maziuk
,
V. V.
,
Doctarau
,
V. V.
, and
Rak
,
A. A.
,
2006
, “
Miniature Loop Heat Pipes With Noninverted Meniscus Concept and Treatment
,”
Int. J. Low-Carbon Technol.
,
1
(
3
), pp.
228
235
.
55.
Phillips
,
F. A.
,
2003
, “Non-Inverted Meniscus Loop Heat Pipe/Capillary Pumped Loop Evaporator,” US Patent 6,533,029.
56.
Chen
,
Y.
,
Qu
,
Y.
, and
Zhang
,
S. S.
,
2012
, “
Design and Simulation of Visual Miniature Loop Heat Pipe
,”
Adv. Mater. Res.
,
605–607
, pp.
346
351
.
57.
Zhang
,
Z.
,
Zhang
,
H.
,
Liu
,
Z.
, and
Liu
,
W.
,
2020
, “
Experimental Study of Heat Transfer Capacity for Loop Heat Pipe With Flat Disk Evaporator
,”
Appl. Therm. Eng.
,
173
, p.
115183
.
58.
Maydanik
,
Y.
,
Vershinin
,
S.
, and
Chernysheva
,
M.
,
2018
, “
The Results of Comparative Analysis and Tests of Ammonia Loop Heat Pipes With Cylindrical and Flat Evaporators
,”
Appl. Therm. Eng.
,
144
, pp.
479
487
.
59.
Song
,
H.
,
Wei
,
L.
, and
Zhi-chun
,
L.
,
2020
, “
Experimental Study on Thermal Performance of Loop Heat Pipe With a Composite-Material Evaporator for Cooling of Electronics
,”
Appl. Therm. Eng.
,
168
, p.
114897
.
60.
Gabsi
,
I.
,
Maalej
,
S.
, and
Zaghdoudi
,
M. C.
,
2018
, “
Thermal Performance Modeling of Loop Heat Pipes With Flat Evaporator for Electronics Cooling
,”
Microelectronics Reliability
,
84
, pp.
37
47
.
61.
Maydanik
,
Y.
,
Chernysheva
,
M.
, and
Vershinin
,
S.
,
2020
, “
High-Capacity Loop Heat Pipe With Flat Evaporator for Efficient Cooling Systems
,”
J. Thermophys. Heat. Transfer.
,
34
(
3
), pp.
1
11
.
62.
Choi
,
J.
, and
Jeong
,
M.
,
2020
, “
Preliminary Design on High-End Workstation Cooling System Using Loop Heat Pipes
,”
Ther. Sci. Eng. Prog.
,
20
, p.
100519
.
63.
Xue
,
Z. H.
,
Qu
,
W.
, and
Xie
,
M. H.
,
2020
, “
High Performance Loop Heat Pipe With Flat Evaporator for Energy-Saving Cooling Systems of Supercomputers
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
142
(
3
), p.
031901
.
64.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
, and
Mochizuki
,
M.
,
2007
, “
Novel Design of a Miniature Loop Heat Pipe Evaporator for Electronic Cooling
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
129
(
10
), pp.
1445
1452
.
65.
Tian
,
W.
,
He
,
S.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Experimental Investigation of a Miniature Loop Heat Pipe With Eccentric Evaporator for Cooling Electronics
,”
Appl. Therm. Eng.
,
159
, p.
113982
.
66.
Phan
,
N.
, and
Nagano
,
H.
,
2020
, “
Fabrication and Testing of a Miniature Flat Evaporator Loop Heat Pipe With Polydimethylsiloxane and Molding
,”
Appl. Therm. Eng.
,
175
, p.
115377
.
67.
He
,
S.
,
Liu
,
Z.
,
Wang
,
D.
,
Liu
,
W.
, and
Yang
,
J.
,
2019
, “
Effect of Different Charge Ratios on Transient Performance of a Flat Type of the Lhp With a Shared Compensation Chamber
,”
Int. J. Heat. Mass. Transfer.
,
138
, pp.
1075
1081
.
68.
Fukushima
,
K.
, and
Nagano
,
H.
,
2017
, “
New Evaporator Structure for Micro Loop Heat Pipes
,”
Int. J. Heat. Mass. Transfer.
,
106
, pp.
1327
1334
.
69.
Chen
,
X.
,
Ye
,
H.
,
Fan
,
X.
,
Ren
,
T.
, and
Zhang
,
G.
,
2016
, “
A Review of Small Heat Pipes for Electronics
,”
Appl. Therm. Eng.
,
96
, pp.
1
17
.
70.
Rashidi
,
S.
,
Hormozi
,
F.
, and
Doranehgard
,
M. H.
,
2020
, “
Abilities of Porous Materials for Energy Saving in Advanced Thermal Systems
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
1
16
.
71.
Kumar
,
N.
, and
Arakeri
,
J. H.
,
2020
, “
Heat and Mass Transfer From a System of Closely Packed Capillaries—Possible Choice for Wicks
,”
Int. J. Therm. Sci.
,
148
, p.
106151
.
72.
Kumar
,
N.
, and
Arakeri
,
J. H.
,
2018
, “
Sustained High Evaporation Rates From Porous Media Consisting of Packed Circular Rods
,”
Int. J. Therm. Sci.
,
133
, pp.
299
306
.
73.
Kumar
,
N.
, and
Arakeri
,
J. H.
,
2018
, “
Experimental Investigation of Effect of Orientation and Surface Roughness on Drying of Porous Media Consisting of Rods
,”
Int. J. Multiphase. Flow.
,
109
, pp.
114
122
.
74.
Chen
,
Q.
, and
Huang
,
Y.
,
2017
, “
Scale Effects on Evaporative Heat Transfer in Carbon Nanotube Wick in Heat Pipes
,”
Int. J. Heat. Mass. Transfer.
,
111
, pp.
852
859
.
75.
Terrado
,
E.
,
Molina
,
R.
,
Natividad
,
E.
,
Castro
,
M.
,
Erra
,
P.
,
Mishkinis
,
D.
,
Torres
,
A.
, and
Martínez
,
M.
,
2011
, “
Modifying the Heat Transfer and Capillary Pressure of Loop Heat Pipe Wicks With Carbon Nanotubes
,”
J. Phys. Chem. C
,
115
(
19
), pp.
9312
9319
.
76.
Li
,
J.
, and
Zhang
,
M.
,
2020
, “
Biporous Nanocarbon Foams and the Effect of the Structure on the Capillary Performance
,”
Progress in Natural Sci.: Mater. Int.
,
30
(
3
), pp.
360
365
.
77.
Ng
,
E. C. J.
,
Kueh
,
T. C.
,
Wang
,
X.
,
Soh
,
A. K.
, and
Hung
,
Y. M.
,
2021
, “
Anomalously Enhanced Thermal Performance of Carbon-Nanotubes Coated Micro Heat Pipes
,”
Energy
,
214
, p.
118909
.
78.
Rojo
,
G.
,
Ghanbari
,
S.
, and
Darabi
,
J.
,
2019
, “
Fabrication and Thermal Characterization of Composite Cu-cnt Micropillars for Capillary-Driven Phase-Change Cooling Devices
,”
Nanoscale Microscale Thermophys. Eng.
,
23
(
4
), pp.
317
333
.
79.
Zhang
,
H.
,
Pan
,
Q.
, and
Zhang
,
H.
,
2013
, “
Multi-Scale Porous Copper Foams as Wick Structures
,”
Mater. Lett.
,
106
, pp.
360
362
.
80.
Hansen
,
G.
, and
Næss
,
E.
,
2015
, “
Performance of Compressed Nickel Foam Wicks for Flat Vertical Heat Pipes
,”
Appl. Therm. Eng.
,
81
, pp.
359
367
.
81.
Shouguang
,
Y.
,
Jiangwei
,
D.
,
Dong
,
S.
,
Sheng
,
L.
, and
Jian
,
L.
,
2015
, “
Experimental Investigation on the Heat Transfer Performance of Heat Pipes With Porous Copper Foam Wicks
,”
Mater. Res. Innovations.
,
19
(
sup5
), pp.
S5
617
.
82.
Zhou
,
W.
,
Ling
,
W.
,
Duan
,
L.
,
Hui
,
K.
, and
Hui
,
K.
,
2016
, “
Development and Tests of Loop Heat Pipe With Multi-layer Metal Foams as Wick Structure
,”
Appl. Therm. Eng.
,
94
, pp.
324
330
.
83.
Putra
,
N.
,
Saleh
,
R.
,
Septiadi
,
W. N.
,
Okta
,
A.
, and
Hamid
,
Z.
,
2014
, “
Thermal Performance of Biomaterial Wick Loop Heat Pipes With Water-Base Al2o3 Nanofluids
,”
Int. J. Therm. Sci.
,
76
, pp.
128
136
.
84.
Putra
,
N.
,
Septiadi
,
W. N.
,
Saleh
,
R.
,
Koestoer
,
R. A.
, and
Purbo Prakoso
,
S.
,
2014
, “
The Effect of Cuo-Water Nanofluid and Biomaterial Wick on Loop Heat Pipe Performance
,”
Adv. Mater. Res.
,
875
, pp.
356
361
.
85.
Putra
,
N.
, and
Septiadi
,
W. N.
,
2017
, “
Improvement of Heat Pipe Performance Through Integration of a Coral Biomaterial Wick Structure Into the Heat Pipe of a Cpu Cooling System
,”
Heat and Mass Transfer
,
53
(
4
), pp.
1163
1174
.
86.
Solomon
,
A. B.
,
Mahto
,
A. K.
,
Joy
,
C.
,
Rajan
,
A. A.
,
Jayprakash
,
D. A.
,
Dixit
,
A.
, and
Sahay
,
A.
,
2020
, “
Application of Bio-Wick in Compact Loop Heat Pipe
,”
Appl. Therm. Eng.
,
169
(
5–6
), p.
114927
.
87.
Odagiri
,
K.
,
Nishikawara
,
M.
, and
Nagano
,
H.
,
2017
, “
Microscale Infrared Observation of Liquid–Vapor Interface Behavior on the Surface of Porous Media for Loop Heat Pipes
,”
Appl. Therm. Eng.
,
126
, pp.
1083
1090
.
88.
Wang
,
D.
,
Wang
,
J.
,
Liu
,
P.
,
Ding
,
S.
, and
Chu
,
H.
,
2020
, “
Evaporation Heat Transfer Characteristic of Porous Wick in an Open Capillary Evaporator
,”
Int. J. Therm. Sci.
,
155
, p.
106445
.
89.
Boubaker
,
R.
,
Harmand
,
S.
, and
Platel
,
V.
,
2018
, “
Experimental Study of the Liquid/Vapor Phase Change in a Porous Media of Two-Phase Heat Transfer Devices
,”
Appl. Therm. Eng.
,
143
, pp.
275
282
.
90.
Kumar
,
P.
,
Wangaskar
,
B.
,
Khandekar
,
S.
, and
Balani
,
K.
,
2018
, “
Thermal-Fluidic Transport Characteristics of Bi-Porous Wicks for Potential Loop Heat Pipe Systems
,”
Exp. Therm. Fluid. Sci.
,
94
, pp.
355
367
.
91.
Odagiri
,
K.
, and
Nagano
,
H.
,
2019
, “
Investigation on Liquid-Vapor Interface Behavior in Capillary Evaporator for High Heat Flux Loop Heat Pipe
,”
Int. J. Therm. Sci.
,
140
, pp.
530
538
.
92.
Odagiri
,
K.
, and
Nagano
,
H.
,
2019
, “
Characteristics of Phase-Change Heat Transfer in a Capillary Evaporator Based on Microscale Infrared/Visible Observation
,”
Int. J. Heat. Mass. Transfer.
,
130
, pp.
938
945
.
93.
Li
,
J.
,
Hong
,
F.
,
Xie
,
R.
, and
Cheng
,
P.
,
2019
, “
Pore Scale Simulation of Evaporation in a Porous Wick of a Loop Heat Pipe Flat Evaporator Using Lattice Boltzmann Method
,”
Int. Commun. Heat and Mass Transfer
,
102
, pp.
22
33
.
94.
Nishikawara
,
M.
,
Otani
,
K.
,
Ueda
,
Y.
, and
Yanada
,
H.
,
2018
, “
Liquid-Vvapor Phase Behavior and Operating Characteristics of the Capillary Evaporator of a Loop Heat Pipe at Start-Up
,”
Int. J. Therm. Sci.
,
129
, pp.
426
433
.
95.
Nishikawara
,
M.
,
Ueda
,
Y.
, and
Yanada
,
H.
,
2019
, “
Static and Dynamic Liquid-Vapor Phase Distribution in the Capillary Evaporator of a Loop Heat Pipe
,”
Microgravity Sci. Technol.
,
31
(
1
), pp.
61
71
.
96.
Yamada
,
Y.
,
Nishikawara
,
M.
,
Yanada
,
H.
, and
Ueda
,
Y.
,
2019
, “
Predicting the Performance of a Loop Heat Pipe Considering Evaporation From the Meniscus at the Three-Phase Contact Line
,”
Ther. Sci. Eng. Prog.
,
11
, pp.
125
132
.
97.
Zhang
,
Q.
,
Lin
,
G.
,
Shen
,
X.
,
Bai
,
L.
, and
Wen
,
D.
,
2020
, “
Visualization Study on the Heat and Mass Transfer in the Evaporator-Compensation Chamber of a Loop Heat Pipe
,”
Appl. Therm. Eng.
,
164
, p.
114472
.
98.
Zhang
,
Y.
,
Luan
,
T.
,
Jiang
,
H.
, and
Liu
,
J.
,
2021
, “
Visualization Study on Start-Up Characteristics of a Loop Heat Pipe With a Carbon Fiber Capillary Wick
,”
Int. J. Heat. Mass. Transfer.
,
169
, p.
120940
.
99.
Vershinin
,
S. V.
, and
Maydanik
,
Y. F.
,
2007
, “
Hysteresis Phenomena in Loop Heat Pipes
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
962
968
.
100.
Ahmed
,
S.
, and
Pandey
,
M.
,
2021
, “
Thin Film Evaporation Model for Two-Phase Capillary Heat Transfer Devices: Examination of Boundary Conditions and Vapour Pressure Gradient
,”
IOP Conference Series: Materials Science and Engineering
,
Pisa, Italy
,
June 10–14
, Vol.
1139
,
IOP Publishing
, p.
012013
.
101.
Ahmed
,
S.
, and
Pandey
,
M.
,
2019
, “
New Insights on Modeling of Evaporation Phenomena in Thin Films
,”
Phys. Fluids.
,
31
(
9
), p.
092001
.
102.
Jasvanth
,
V.
,
Ambirajan
,
A.
,
Adoni
,
A. A.
, and
Arakeri
,
J. H.
,
2019
, “
Numerical Investigation of An Evaporating Meniscus in a Heated Capillary Slot
,”
Heat and Mass Transfer
,
55
(
12
), pp.
3675
3688
.
103.
Hu
,
H.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2020
, “
Role of Nanoscale Roughness in the Heat Transfer Characteristics of Thin Film Evaporation
,”
Int. J. Heat. Mass. Transfer.
,
150
, p.
119306
.
104.
Freund
,
J. B.
,
2005
, “
The Atomic Detail of an Evaporating Meniscus
,”
Phys. Fluids.
,
17
(
2
), p.
022104
.
105.
Ghajar
,
M.
, and
Darabi
,
J.
,
2014
, “
Evaporative Heat Transfer Analysis of a Micro Loop Heat Pipe With Rectangular Grooves
,”
Int. J. Therm. Sci.
,
79
, pp.
51
59
.
106.
Ghajar
,
M.
,
Darabi
,
J.
, and
Crews
,
N.
,
2005
, “
A Hybrid CFD-Mathematical Model for Simulation of a MEMS Loop Heat Pipe for Electronics Cooling Applications
,”
J. Micromech. Microeng.
,
15
(
2
), pp.
313
321
.
107.
Ghajar
,
M.
, and
Darabi
,
J.
,
2005
, “
Numerical Modeling of Evaporator Surface Temperature of a Micro Loop Heat Pipe at Steady-State Condition
,”
J. Micromech. Microeng.
,
15
(
10
), pp.
1963
1971
.
108.
Jasvanth
,
V.
,
Ambirajan
,
A.
,
Kumar
,
D.
, and
Arakeri
,
J. H.
,
2013
, “
Effect of Heat Pipe Figure of Merit on an Evaporating Thin Film
,”
J. Thermophys. Heat. Transfer.
,
27
(
4
), pp.
633
640
.
109.
Jung
,
E. G.
, and
Boo
,
J. H.
,
2019
, “
A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation
,”
Energies
,
12
(
12
), p.
2408
.
110.
Jung
,
E. G.
, and
Boo
,
J. H.
,
2019
, “
A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part II—Modeling and Simulation
,”
Energies
,
12
(
12
), p.
2408
.
111.
Mandel
,
R.
,
Shooshtari
,
A.
, and
Ohadi
,
M.
,
2017
, “
Thin-film Evaporation on Microgrooved Heatsinks
,”
Numer. Heat Transfer; Part A: Appl.
,
71
(
2
), pp.
111
127
.
112.
Jasvanth
,
V. S.
,
Ambirajan
,
A.
, and
Arakeri
,
J. H.
,
2016
, “
Experimental Study on Evaporation of Pentane From a Heated Capillary Slot
,”
Int. J. Heat. Mass. Transfer.
,
95
, pp.
466
476
.
113.
Fu
,
B.
,
Zhao
,
N.
,
Tian
,
B.
,
Corey
,
W.
, and
Ma
,
H.
,
2018
, “
Evaporation Heat Transfer in Thin-Film Region With Bulk Vapor Flow Effect
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
140
(
1
), p.
011502
.
114.
Bellur
,
K.
,
Médici
,
E. F.
,
Choi
,
C. K.
,
Hermanson
,
J. C.
, and
Allen
,
J. S.
,
2020
, “
Multiscale Approach to Model Steady Meniscus Evaporation in a Wetting Fluid
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024001
.
115.
Akkus
,
Y.
,
Koklu
,
A.
, and
Beskok
,
A.
,
2019
, “
Atomic Scale Interfacial Transport at an Extended Evaporating Meniscus
,”
Langmuir
,
35
(
13
), pp.
4491
4497
.
116.
Maroo
,
S. C.
, and
Chung
,
J.
,
2013
, “
Fundamental Roles of Nonevaporating Film and Ultrahigh Heat Flux Associated With Nanoscale Meniscus Evaporation in Nucleate Boiling
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
135
(
6
), p.
061501
.
117.
Nugraha
,
P. F.
, and
Putra
,
N.
,
2019
, “
The Fabrication and Testing Development of Heat Pipe Wicks: A Review
,”
2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA)
,
Singapore
,
Apr. 27–30
,
IEEE
, pp.
264
271
.
118.
Esarte
,
J.
,
Blanco
,
J.
,
Bernardini
,
A.
, and
San-José
,
J.
,
2017
, “
Optimizing the Design of a Two-Phase Cooling System Loop Heat Pipe: Wick Manufacturing With the 3d Selective Laser Melting Printing Technique and Prototype Testing
,”
Appl. Therm. Eng.
,
111
, pp.
407
419
.
119.
Jafari
,
D.
,
Wits
,
W. W.
, and
Geurts
,
B. J.
,
2018
, “
Metal 3d-Printed Wick Structures for Heat Pipe Application: Capillary Performance Analysis
,”
Appl. Therm. Eng.
,
143
, pp.
403
414
.
120.
Hu
,
Z.
,
Wang
,
D.
,
Xu
,
J.
, and
Zhang
,
L.
,
2020
, “
Development of a Loop Heat Pipe With the 3d Printed Stainless Steel Wick in the Application of Thermal Management
,”
Int. J. Heat. Mass. Transfer.
,
161
, p.
120258
.
121.
McDonough
,
J.
,
2020
, “
A Perspective on the Current and Future Roles of Additive Manufacturing in Process Engineering, With An Emphasis on Heat Transfer
,”
Ther. Sci. Eng. Prog.
,
19
, p.
100594
.
122.
Lin
,
T.
,
Gan
,
T.
,
Quan
,
X.
, and
Cheng
,
P.
,
2020
, “
Fabricating Metal Wicks by Lmc-Like Continuous Directional Freeze Casting
,”
J. Mater. Process. Technol.
,
282
, p.
116641
.
123.
Tang
,
H.
,
Weng
,
C.
,
Tang
,
Y.
,
Li
,
H.
,
Xu
,
T.
, and
Fu
,
T.
,
2021
, “
Thermal Performance Enhancement of an Ultra-Thin Flattened Heat Pipe With Multiple Wick Structure
,”
Appl. Therm. Eng.
,
183
, p.
116203
.
124.
Vasiliev
Jr,
L. L.
,
2007
, “
Advanced Loop Heat Pipe Evaporator With Ceramic Nanostructured Composite of Alumina, Alumina-Silica Oxide as a Wick Structure
, Technical Report, SAE Technical Paper.
125.
Vasiliev
,
L.
,
Marengo
,
M.
,
Ferrandi
,
C.
,
Zinna
,
S.
, and
Maziuk
,
V.
,
2009
, “
Advanced Design of a ‘Low-Cost’ Loop Heat Pipe
,” Technical Report, SAE Technical Paper.
126.
Zinna
,
S.
,
Vasiliev
,
L.
,
Marengo
,
M.
, and
Ferrandi
,
C.
,
2009
, “
Advanced Design of a Low Cost Loop Heat Pipe and Comparison With a Novel Numerical Approach
,”
41st AIAA Thermophysics Conference
,
San Antonia, CA
,
June 22–25
, p.
3754
.
127.
Buffone
,
C.
,
2014
, “
Testing of a Low-Cost Loop Heat Pipe Design
,”
J. Electron. Cooling Thermal Control
,
4
(
1
), pp.
33
38
.
128.
Huang
,
B.-J.
,
Chuang
,
Y.-H.
, and
Yang
,
P.-E.
,
2017
, “
Low-Cost Manufacturing of Loop Heat Pipe for Commercial Applications
,”
Appl. Therm. Eng.
,
126
, pp.
1091
1097
.
129.
He
,
S.
,
Zhou
,
P.
,
Ma
,
Z.
,
Deng
,
W.
,
Zhang
,
H.
,
Chi
,
Z.
,
Liu
,
W.
, and
Liu
,
Z.
,
2020
, “
Experimental Study on Transient Performance of the Loop Heat Pipe With a Pouring Porous Wick
,”
Appl. Therm. Eng.
,
164
, p.
114450
.
130.
Nemec
,
P.
,
2018
, “
Porous Structures in Heat Pipes
,”
Porosity—Process, Technologies and Applications
, InTech, pp.
141
180
.
131.
Guo
,
H.
,
Ji
,
X.
, and
Xu
,
J.
,
2020
, “
Enhancement of Loop Heat Pipe Heat Transfer Performance With Superhydrophilic Porous Wick
,”
Int. J. Therm. Sci.
,
156
, p.
106466
.
132.
Sudhakar
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2019
, “
Experimental Investigation of Boiling Regimes in a Capillary-Fed Two-Layer Evaporator Wick
,”
Int. J. Heat. Mass. Transfer.
,
135
, pp.
1335
1345
.
133.
Sudhakar
,
S.
,
Weibel
,
J. A.
,
Zhou
,
F.
,
Dede
,
E. M.
, and
Garimella
,
S. V.
,
2020
, “
The Role of Vapor Venting and Liquid Feeding on the Dryout Limit of Two-Layer Evaporator Wicks
,”
Int. J. Heat. Mass. Transfer.
,
148
, p.
119063
.
134.
Ji
,
X.
,
Wang
,
Y.
,
Xu
,
J.
, and
Huang
,
Y.
,
2017
, “
Experimental Study of Heat Transfer and Start-Up of Loop Heat Pipe With Multiscale Porous Wicks
,”
Appl. Therm. Eng.
,
117
, pp.
782
798
.
135.
Deng
,
D.
,
Tang
,
Y.
,
Huang
,
G.
,
Lu
,
L.
, and
Yuan
,
D.
,
2013
, “
Characterization of Capillary Performance of Composite Wicks for Two-Phase Heat Transfer Devices
,”
Int. J. Heat. Mass. Transfer.
,
56
(
1–2
), pp.
283
293
.
136.
Chen
,
G.
,
Tang
,
Y.
,
Wan
,
Z.
,
Zhong
,
G.
,
Tang
,
H.
, and
Zeng
,
J.
,
2019
, “
Heat Transfer Characteristic of an Ultra-Thin Flat Plate Heat Pipe With Surface-Functional Wicks for Cooling Electronics
,”
Int. Commun. Heat Mass Transfer
,
100
, pp.
12
19
.
137.
Li
,
H.
,
Fu
,
S.
,
Li
,
G.
,
Fu
,
T.
,
Zhou
,
R.
,
Tang
,
Y.
,
Tang
,
B.
,
Deng
,
Y.
, and
Zhou
,
G.
,
2018
, “
Effect of Fabrication Parameters on Capillary Pumping Performance of Multi-Scale Composite Porous Wicks for Loop Heat Pipe
,”
Appl. Therm. Eng.
,
143
, pp.
621
629
.
138.
Xu
,
J.
,
Zhang
,
L.
,
Xu
,
H.
,
Zhong
,
J.
, and
Xuan
,
J.
,
2014
, “
Experimental Investigation and Visual Observation of Loop Heat Pipes With Two-Layer Composite Wicks
,”
Int. J. Heat. Mass. Transfer.
,
72
, pp.
378
387
.
139.
Xin
,
G.
,
Zhang
,
P.
,
Chen
,
Y.
,
Cheng
,
L.
,
Huang
,
T.
, and
Yin
,
H.
,
2018
, “
Development of Composite Wicks Having Different Thermal Conductivities for Loop Heat Pipes
,”
Appl. Therm. Eng.
,
136
, pp.
229
236
.
140.
Zhang
,
Z.
,
Zhao
,
R.
,
Liu
,
Z.
, and
Liu
,
W.
,
2021
, “
Application of Biporous Wick in Flat-plate Loop Heat Pipe With Long Heat Transfer Distance
,”
Appl. Therm. Eng.
,
184
, p.
116283
.
141.
Wu
,
S.-C.
,
Huang
,
C.-J.
,
Chen
,
S.-H.
, and
Chen
,
Y.-M.
,
2013
, “
Manufacturing and Testing of the Double-Layer Wick Structure in a Loop Heat Pipe
,”
Int. J. Heat. Mass. Transfer.
,
56
(
1–2
), pp.
709
714
.
142.
Wang
,
D.
,
Liu
,
Z.
,
He
,
S.
,
Yang
,
J.
, and
Liu
,
W.
,
2015
, “
Operational Characteristics of a Loop Heat Pipe With a Flat Evaporator and Two Primary Biporous Wicks
,”
Int. J. Heat. Mass. Transfer.
,
89
, pp.
33
41
.
143.
Xu
,
J.
,
Wang
,
D.
,
Hu
,
Z.
,
Zhang
,
L.
,
Ye
,
L.
, and
Zhou
,
Y.
,
2020
, “
Effect of the Working Fluid Transportation in the Copper Composite Wick on the Evaporation Efficiency of a Flat Loop Heat Pipe
,”
Appl. Therm. Eng.
,
178
, p.
115515
.
144.
Wang
,
D.
,
Wang
,
J.
,
Ding
,
S.
, and
Chu
,
H.
,
2020
, “
Study on Evaporation Heat Transfer Performance of Composite Porous Wicks With Spherical-Dendritic Powders Based on Orthogonal Experiment
,”
Int. J. Heat. Mass. Transfer.
,
156
, p.
119794
.
145.
Wong
,
S.-C.
,
2014
, “The Evaporation Mechanism in the Wick of Copper Heat Pipes,”
The Evaporation Mechanism in the Wick of Copper Heat Pipes
,
Springer
,
Cham, Switzerland
, pp.
1
36
.
146.
Liu
,
J.
,
Zhang
,
Y.
,
Feng
,
C.
,
Liu
,
L.
, and
Luan
,
T.
,
2019
, “
Study of Copper Chemical-Plating Modified Polyacrylonitrile-Based Carbon Fiber Wick Applied to Compact Loop Heat Pipe
,”
Exp. Therm. Fluid. Sci.
,
100
, pp.
104
113
.
147.
Shum
,
C.
,
Rosengarten
,
G.
, and
Zhu
,
Y.
,
2017
, “
Enhancing Wicking Microflows in Metallic Foams
,”
Microfluidics and Nanofluidics
,
21
(
12
), p.
177
.
148.
Jyothi Sankar
,
P.
,
Venkatachalapathy
,
S.
, and
Santhosh Kumar
,
M.
,
2019
, “
Effect of Hydrophilic Coating on Mesh Wicks Used in Heat Pipes
,”
Surf. Eng.
,
36
(
7
), pp.
1
7
.
149.
Huang
,
G.
,
Yuan
,
W.
,
Tang
,
Y.
,
Zhang
,
B.
,
Zhang
,
S.
, and
Lu
,
L.
,
2017
, “
Enhanced Capillary Performance in Axially Grooved Aluminium Wicks by Alkaline Corrosion Treatment
,”
Exp. Therm. Fluid. Sci.
,
82
, pp.
212
221
.
150.
Nam
,
Y.
,
Sharratt
,
S.
,
Byon
,
C.
,
Kim
,
S. J.
, and
Ju
,
Y. S.
,
2010
, “
Fabrication and Characterization of the Capillary Performance of Superhydrophilic Cu Micropost Arrays
,”
J. Microelectromech. Syst.
,
19
(
3
), pp.
581
588
.
151.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Rajesh
,
S.
, and
Wongwises
,
S.
,
2018
, “
Effect of Nanoparticle Coating on the Performance of a Miniature Loop Heat Pipe for Electronics Cooling Applications
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
140
(
2
), p.
022401
.
152.
Venkata Krishnan
,
D.
,
Udaya Kumar
,
G.
,
Suresh
,
S.
,
Thansekhar
,
M. R.
, and
Iqbal
,
U.
,
2018
, “
Evaluating the Scale Effects of Metal Nanowire Coatings on the Thermal Performance of Miniature Loop Heat Pipe
,”
Appl. Therm. Eng.
,
133
, pp.
727
738
.
153.
Bang
,
S.
,
Ryu
,
S.
,
Ki
,
S.
,
Song
,
K.
,
Kim
,
J.
,
Kim
,
J.
, and
Nam
,
Y.
,
2020
, “
Superhydrophilic Catenoidal Aluminum Micropost Evaporator Wicks
,”
Int. J. Heat. Mass. Transfer.
,
158
, p.
120011
.
154.
Wallin
,
P.
,
2012
, “
Heat Pipe, Selection of Working Fluid
,”
Heat and Mass Trasfer Project Report
, pp.
1
7
.
155.
Morris
,
J. F.
,
1973
, “
Figure-of-Merit Calculation Methods for Organic Heat-Pipe Fluids
,” Technical Report, NASA TM X-2945.
156.
Poplaski
,
L. M.
,
Benn
,
S. P.
, and
Faghri
,
A.
,
2017
, “
Thermal Performance of Heat Pipes Using Nanofluids
,”
Int. J. Heat. Mass. Transfer.
,
107
, pp.
358
371
.
157.
Marcus
,
B. D.
,
1972
,
Theory and Design of Variable Conductance Heat Pipes
,
National Aeronautics and Space Administration
.
158.
Maydanik
,
Y.
,
Vershinin
,
S.
, and
Chernysheva
,
M.
,
2020
, “
Investigation of Thermal Characteristics of a Loop Heat Pipe in a Wide Range of External Conditions
,”
Int. J. Heat. Mass. Transfer.
,
147
, p.
118967
.
159.
Veeramachaneni
,
S.
,
Pisipaty
,
S. K.
,
Vedula
,
D. R.
, and
Solomon
,
A. B.
,
2020
, “
Characterization of Flat Miniature Loop Heat Pipe Using Water and Methanol at Different Inclinations
,”
Exper. Heat Trans.
, pp.
1
23
.
160.
Li
,
X.
,
Yao
,
D.
,
Zuo
,
K.
,
Xia
,
Y.
, and
Zeng
,
Y.-P.
,
2021
, “
Effects of Pore Structures on the Capillary and Thermal Performance of Porous Silicon Nitride as Novel Loop Heat Pipe Wicks
,”
Int. J. Heat. Mass. Transfer.
,
169
, p.
120985
.
161.
Wayner
,
P.
, Jr.,
1978
, “
The Effect of the London-van Der Waals Dispersion Force on Interline Heat Transfer
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
100
(
1
), pp.
155
159
.
162.
Wayner Jr.
,
P.
,
1978
, “
A Constant Heat Flux Model of the Evaporating Interline Region
,”
Int. J. Heat. Mass. Transfer.
,
21
, pp.
362
364
.
163.
Wayner
,
P. C.
,
1989
, “
A Dimensionless Number for the Contact Line Evaporative Heat Sink
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
111
(
3
), pp.
813
815
.
164.
Ahmed
,
S.
, and
Pandey
,
M.
,
2020
, “
A Simple Figure of Merit for Devices Utilizing Thin Film Evaporation
,”
Int. Commun. Heat and Mass Transfer
,
117
, p.
104803
.
165.
Chernysheva
,
M.
, and
Maydanik
,
Y. F.
,
2017
, “
Effect of Liquid Filtration in a Wick on Thermal Processes in a Flat Disk-Shaped Evaporator of a Loop Heat Pipe
,”
Int. J. Heat. Mass. Transfer.
,
106
, pp.
222
231
.
166.
Anand
,
A. R.
,
Jaiswal
,
A.
,
Ambirajan
,
A.
, and
Dutta
,
P.
,
2018
, “
Experimental Studies on a Miniature Loop Heat Pipe With Flat Evaporator With Various Working Fluids
,”
Appl. Therm. Eng.
,
144
, pp.
195
503
.
167.
Dhillon
,
N. S.
,
Pisano
,
A. P.
,
Hogue
,
C.
, and
Hopcroft
,
M. A.
,
2008
, “
Mlhp: A High Heat Flux Localized Cooling Technology for Electronic Substrates
,”
ASME 2008 International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Oct. 31–Nov. 6
,
American Society of Mechanical Engineers
, pp.
621
630
.
168.
Dhillon
,
N. S.
,
2012
, “
Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates
,” Ph.D. thesis,
University of California
,
Berkeley, CA
.
169.
Ahmed
,
S.
, and
Pandey
,
M.
,
2016
, “
Design and Numerical Simulation of a Micro Loop Heat Pipe With Finned Evaporator
,”
Proceedings of 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power
,
Allahabad, India
,
Dec. 15–17
.
170.
Chen
,
X.
,
Qi
,
C.
,
Wang
,
W.
,
Miao
,
J.
, and
Zhang
,
H.
,
2021
, “
Heat Transfer Limit Resulting From Heat Leak in a Cryogenic Loop Heat Pipe
,”
Appl. Therm. Eng.
,
184
, p.
116280
.
171.
Maydanik
,
Y. F.
,
Pastukhov
,
V. G.
,
Chernysheva
,
M. A.
,
2015
, “
Development and Investigation of a Miniature Copper-Acetone Loop Heat Pipe With a Flat Evaporator
,”
J. Electron. Cooling Thermal Control
,
5
(
04
), p.
77
.
172.
Joung
,
W.
,
Lee
,
J.
,
Lee
,
S.
, and
Lee
,
J.
,
2016
, “
Derivation and Validation of a Figure of Merit for Loop Heat Pipes With Medium Temperature Working Fluids
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
138
(
5
), p.
052901
.
173.
Yadavalli
,
Y.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
Performance-governing Transport Mechanisms for Heat Pipes at Ultrathin Form Factors
,”
IEEE Trans. Components, Packaging Manuf. Technol.
,
5
(
11
), pp.
1618
1627
.
174.
Patankar
,
G.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2017
, “
Working-Fluid Selection for Minimized Thermal Resistance in Ultra-Thin Vapor Chambers
,”
Int. J. Heat. Mass. Transfer.
,
106
, pp.
648
654
.
175.
Liu
,
C.
,
Xie
,
R.
,
Li
,
N.
,
Lu
,
D.
,
Hong
,
F.
, and
Wu
,
Y.
,
2020
, “
Experimental Study of Loop Heat Pipes With Different Working Fluids in 190 260 K
,”
Appl. Therm. Eng.
,
178
, p.
115530
.
176.
Naruka
,
D. S.
,
Dwivedi
,
R.
, and
Singh
,
P. K.
,
2020
, “
Experimental Inquisition of Heat Pipe: Performance Evaluation for Different Fluids
,”
Exp. Heat Transfer
,
33
(
7
), pp.
1
15
.
177.
Xiao
,
B.
,
Deng
,
W.
,
Ma
,
Z.
,
He
,
S.
,
He
,
L.
,
Li
,
X.
,
Yuan
,
F.
,
Liu
,
W.
, and
Liu
,
Z.
,
2020
, “
Experimental Investigation of Loop Heat Pipe With a Large Squared Evaporator for Multi-Heat Sources Cooling
,”
Renewable Energy
,
147
, pp.
239
248
.
178.
Khandekar
,
S.
,
2017
,
CRC Handbook of Thermal Engineering
(
ch Applications: Heat Pipes
),
CRC Press
,
Boca Raton, FL
, pp.
953
985
.
179.
Wang
,
H.
,
Lin
,
G.
,
Bai
,
L.
,
Tao
,
Y.
, and
Wen
,
D.
,
2020
, “
Comparative Study of Two Loop Heat Pipes Using R134a as the Working Fluid
,”
Appl. Therm. Eng.
,
164
, p.
114459
.
180.
Jouhara
,
H.
,
Chauhan
,
A.
,
Nannou
,
T.
,
Almahmoud
,
S.
,
Delpech
,
B.
, and
Wrobel
,
L. C.
,
2017
, “
Heat Pipe Based Systems—Advances and Applications
,”
Energy
,
128
, pp.
729
754
.
181.
Khalid
,
S. U.
,
Babar
,
H.
,
Ali
,
H. M.
,
Janjua
,
M. M.
, and
Ali
,
M. A.
,
2020
, “
Heat Pipes: Progress in Thermal Performance Enhancement for Microelectronics
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2227
2243
.
182.
Boo
,
J. H.
, and
Jung
,
E. G.
,
2009
, “
Bypass Line Assisted Start-Up of a Loop Heat Pipe With a Flat Evaporator
,”
J. Mech. Sci. Technol.
,
23
(
6
), pp.
1613
1619
.
183.
Jung
,
E. G.
, and
Boo
,
J. H.
,
2020
, “
Experimental Observation of Thermal Behavior of a Loop Heat Pipe With a Bypass Line Under High Heat Flux
,”
Energy
,
197
, p.
117241
.
184.
Jung
,
E. G.
, and
Boo
,
J. H.
,
2020
, “
Overshoot Elimination of the Evaporator Wall Temperature of a Loop Heat Pipe Through a Bypass Line
,”
Appl. Therm. Eng.
,
165
, p.
114594
.
185.
Lu
,
X.
, and
Wei
,
J.-J.
,
2014
, “
Experimental Study on a Novel Loop Heat Pipe With Both Flat Evaporator and Boiling Pool
,”
Int. J. Heat. Mass. Transfer.
,
79
, pp.
54
63
.
186.
Wang
,
X.
, and
Wei
,
J.
,
2016
, “
Visual Investigation on Startup Characteristics of a Novel Loop Heat Pipe
,”
Appl. Therm. Eng.
,
105
, pp.
198
208
.
187.
Wang
,
X.
,
Wei
,
J.
,
Deng
,
Y.
,
Wu
,
Z.
, and
Sundén
,
B.
,
2018
, “
Enhancement of Loop Heat Pipe Performance With the Application of Micro/Nano Hybrid Structures
,”
Int. J. Heat. Mass. Transfer.
,
127
, pp.
1248
1263
.
188.
Zhou
,
Y.
,
Deng
,
Y.
, and
Wei
,
J.
,
2018
, “
Experimental Study on Phase Change Heat Transfer Enhancement of a Novel Loop Heat Pipe by Using Surface Micro-Structures
,”
Interfacial Phenomena Heat Transfer
,
6
(
1
), pp.
23
36
.
189.
Liu
,
L.
,
Yang
,
X.
,
Yuan
,
B.
,
Ji
,
X.
, and
Wei
,
J.
,
2020
, “
Experimental Study on Thermal Performance of a Loop Heat Pipe With a Bypass Line
,”
Int. J. Heat. Mass. Transfer.
,
147
, p.
118996
.
190.
Zhang
,
P.
,
Wei
,
X.
,
Yan
,
L.
,
Xu
,
H.
, and
Yang
,
T.
,
2019
, “
Review of Recent Developments on Pump-Assisted Two-Phase Flow Cooling Technology
,”
Appl. Therm. Eng.
,
150
, pp.
811
823
.
191.
Setyawan
,
I.
,
Putra
,
N.
,
Hakim
,
I. I.
, and
Irwansyah
,
R.
,
2019
, “
Development of Hybrid Loop Heat Pipe Using Pump Assistance for Cooling Application on High Heat Flux Device
,”
J. Mech. Sci. Technol.
,
33
(
8
), pp.
3685
3694
.
192.
Kiseev
,
V.
, and
Sazhin
,
O.
,
2017
, “
An Experimental Study of Loop Heat Pipes With Steam Jet Pump
,”
Int. J. Heat. Mass. Transfer.
,
115
, pp.
137
142
.
193.
Liu
,
L.
,
Yang
,
X.
,
Yuan
,
B.
,
Zhang
,
Y.
, and
Wei
,
J.
,
2021
, “
Experimental Study of a Novel Loop Heat Pipe With a Vapor-Driven Jet Injector
,”
Int. J. Heat. Mass. Transfer.
,
164
, p.
120518
.
194.
Setyawan
,
I.
,
Putra
,
N.
, and
Hakim
,
I. I.
,
2018
, “
Experimental Study of Hybrid Loop Heat Pipe Using Pump Assistance for High Heat Flux System
,”
IOP Conference Series: Earth and Environmental Science, Vol. 105
,
Bali, Indonesia
,
Oct. 3–4
,
IOP Publishing
, p.
012011
.
195.
Setyawan
,
I.
,
Putra
,
N.
, and
Hakim
,
I. I.
,
2018
, “
Experimental Investigation of the Operating Characteristics of a Hybrid Loop Heat Pipe Using Pump Assistance
,”
Appl. Therm. Eng.
,
130
, pp.
10
16
.
196.
Zhang
,
H.
,
Jiang
,
C.
,
Zhang
,
Z.
,
Liu
,
Z.
,
Luo
,
X.
, and
Liu
,
W.
,
2020
, “
A Study on Thermal Performance of a Pump-Assisted Loop Heat Pipe With Ammonia as Working Fluid
,”
Appl. Therm. Eng.
,
175
, p.
115342
.
197.
Yang
,
Y.
,
Zhu
,
K.
,
Wang
,
Y.
,
Wei
,
J.
,
Zheng
,
M.
, and
Cui
,
Z.
,
2016
, “
Experimental Investigation and Visual Observation of a Vapor–Liquid Separated Flat Loop Heat Pipe Evaporator
,”
Appl. Therm. Eng.
,
101
, pp.
71
78
.
198.
Zhu
,
K.
,
Chen
,
X.
,
Dai
,
B.
,
Zheng
,
M.
,
Wang
,
Y.
, and
Li
,
H.
,
2017
, “
Operation Characteristics of a New-Type Loop Heat Pipe (lhp) With Wick Separated From Heating Surface in the Evaporator
,”
Appl. Therm. Eng.
,
123
, pp.
1034
1041
.
199.
Zhu
,
K.
,
Li
,
X.
,
Li
,
H.
,
Chen
,
X.
, and
Wang
,
Y.
,
2018
, “
Experimental and Theoretical Study of a Novel Loop Heat Pipe
,”
Appl. Therm. Eng.
,
130
, pp.
354
362
.
200.
Li
,
X.
,
Zhu
,
K.
,
Li
,
H.
,
Chen
,
X.
, and
Wang
,
Y.
,
2019
, “
Performance Comparison Regarding Loop Heat Pipes With Different Evaporator Structures
,”
Int. J. Therm. Sci.
,
136
, pp.
86
95
.
201.
Li
,
X.
,
Xu
,
B.
,
Zhang
,
G.
,
Wang
,
Y.
,
Dai
,
B.
,
Zhu
,
K.
,
Liu
,
S.
, and
Zhang
,
Z.
,
2021
, “
Experimental Investigation on the Impact of Pressure Head of Evaporation During the Loop Heat Pipe Operation
,”
Appl. Therm. Eng.
,
185
, p.
116455
.
202.
Hong
,
S.
,
Wang
,
S.
, and
Zhang
,
Z.
,
2016
, “
Multiple Orientations Research on Heat Transfer Performances of Ultra-Thin Loop Heat Pipes With Different Evaporator Structures
,”
Int. J. Heat. Mass. Transfer.
,
98
, pp.
415
425
.
203.
Hong
,
S.
,
Wang
,
S.
, and
Zhang
,
L.
,
2017
, “
Effect of Groove Configuration on Two-Phase Flow Instability for Ultra-Thin Looped Heat Pipes in Thermal Management System
,”
Int. J. Therm. Sci.
,
121
, pp.
369
380
.
204.
Zhang
,
Y.
,
Xia
,
Z.
,
Song
,
B.
,
Xu
,
M.
,
Tian
,
Y.
, and
Chen
,
Y.
,
2020
, “
Experimental Analysis on the Loop Heat Pipes With Different Microchannel Evaporators
,”
Appl. Therm. Eng.
,
178
, p.
115547
.
205.
Weng
,
C.
,
Wang
,
Z.
,
Xiang
,
J.
,
Zhao
,
X.
,
Chen
,
F.
,
Zheng
,
S.
, and
Yu
,
M.
,
2021
, “
Numerical and Experimental Investigations of the Micro-Channel Flat Loop Heat Pipe (MCFLHP) Heat Recovery System for Data Centre Cooling and Heat Recovery
,”
J. Building Eng.
,
35
, p.
102088
.
206.
Wu
,
S.-C.
,
2015
, “
Study of Self-rewetting Fluid Applied to Loop Heat Pipe
,”
Int. J. Therm. Sci.
,
98
, pp.
374
380
.
207.
Wu
,
S.-C.
,
Lee
,
T.-J.
,
Lin
,
W.-J.
, and
Chen
,
Y.-M.
,
2017
, “
Study of Self-rewetting Fluid Applied to Loop Heat Pipe With Ptfe Wick
,”
Appl. Therm. Eng.
,
119
, pp.
622
628
.
208.
Boubaker
,
R.
,
Harmand
,
S.
, and
Ouenzerfi
,
S.
,
2019
, “
Effect of Self-Rewetting Fluids on the Liquid/Vapor Phase Change in a Porous Media of Two-Phase Heat Transfer Devices
,”
Int. J. Heat. Mass. Transfer.
,
136
, pp.
655
663
.
209.
Tang
,
Y.
,
Zhou
,
R.
,
Lu
,
L.
, and
Xie
,
Z.
,
2012
, “
Anti-Gravity Loop-Shaped Heat Pipe With Graded Pore-Size Wick
,”
Appl. Therm. Eng.
,
36
, pp.
78
86
.
210.
Du
,
S.
,
Zhang
,
Q.
,
Hou
,
P.
,
Yue
,
C.
, and
Zou
,
S.
,
2020
, “
Experimental Study and Steady-State Model of a Novel Plate Loop Heat Pipe Without Compensation Chamber for Cpu Cooling
,”
Sustainable Cities and Society
,
53
, p.
101894
.
211.
Zhou
,
G.
,
Li
,
J.
,
Lv
,
L.
, and
Peterson
,
G.
,
2017
, “
Comparative Study on Thermal Performance of Ultrathin Miniature Loop Heat Pipes With Different Internal Wicks
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
139
(
12
), p.
122004
.
212.
Wang
,
C.
,
Kazoe
,
Y.
,
Morikawa
,
K.
,
Shimizu
,
H.
,
Pihosh
,
Y.
,
Mawatari
,
K.
, and
Kitamori
,
T.
,
2017
, “
Micro Heat Pipe Device Utilizing Extended Nanofluidics
,”
RSC. Adv.
,
7
(
80
), pp.
50591
50597
.
213.
Cho
,
H.
,
Jin
,
L.
, and
Jeong
,
S.
,
2020
, “
Experimental Investigation on Performances and Characteristics of Nitrogen-Charged Cryogenic Loop Heat Pipe With Wick-Mounted Condenser
,”
Cryogenics
,
105
, p.
102970
.
214.
Zhang
,
X.
,
Shen
,
J.
,
He
,
W.
,
Xu
,
P.
,
Zhao
,
X.
, and
Tan
,
J.
,
2015
, “
Comparative Study of a Novel Liquid–Vapour Separator Incorporated Gravitational Loop Heat Pipe Against the Conventional Gravitational Straight and Loop Heat Pipes—Part i: Conceptual Development and Theoretical Analyses
,”
Energy. Convers. Manage.
,
90
, pp.
409
426
.
215.
Zhang
,
X.
,
Shen
,
J.
,
He
,
W.
,
Xu
,
P.
,
Zhao
,
X.
, and
Tan
,
J.
,
2015
, “
Comparative Study of a Novel Liquid-Vapour Separator Incorporated Gravitational Loop Heat Pipe Against the Conventional Gravitational Straight and Loop Heat Pipes—Part II: Experimental Testing and Simulation Model Validation
,”
Energy. Convers. Manage.
,
93
, pp.
228
238
.
216.
Khalili
,
M.
,
Abolmaali
,
A. M.
, and
Shafii
,
M.
,
2018
, “
Experimental and Analytical Study of Thermohydraulic Performance of a Novel Loop Heat Pipe With an Innovative Active Temperature Control Method
,”
Appl. Therm. Eng.
,
143
, pp.
964
976
.
217.
Petit
,
C.
,
Siedel
,
B.
,
Gloriod
,
D.
,
Sartre
,
V.
,
Lefèvre
,
F.
, and
Bonjour
,
J.
,
2015
, “
Adsorption-Based Antifreeze System for Loop Heat Pipes
,”
Appl. Therm. Eng.
,
78
, pp.
704
711
.
You do not currently have access to this content.