Abstract

Effect of bottom surface thermal energy loss for a packed bed solar air heater is investigated using both one-dimensional transient and steady-state models. While the former is solved numerically, closed-form solution is obtained for the latter. The effect of variation in base insulation thickness on the system output is studied. For a given bottom insulation thickness, the dependence of its effectiveness on various thermo-geometric parameters is also analyzed. It is observed that a collector with an uninsulated base loses about 60% of the available incident solar energy. In comparison, when the base insulation is as thick as the base wall, i.e., 50 mm here, the base loss fraction drops to nearly 6%, thus highlighting the importance of base insulation. Further, it is seen that the efficiency of a particular base insulation thickness lessens with larger length and width of collector, and rises with a larger mass flowrate of air flowing through it. This work presents a mathematical tool to calculate appropriate insulation thermal resistance to be applied at the base of packed bed solar air heaters that yields the best possible thermal performance alongside minimum insulation cost.

References

1.
Jain
,
D.
, and
Jain
,
R. K.
,
2004
, “
Performance Evaluation of an Inclined Multi-pass Solar Air Heater With In-built Thermal Storage on Deep-Bed Drying Application
,”
J. Food Eng.
,
65
(
4
), pp.
497
509
.
2.
Jain
,
S. K.
,
Agrawal
,
G. D.
, and
Misra
,
R.
,
2020
, “
Experimental Investigation of Thermohydraulic Performance of the Solar Air Heater Having Arc-Shaped Ribs With Multiple Gaps
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011014
.
3.
Patel
,
S. S.
, and
Lanjewar
,
A.
,
2020
, “
Heat Transfer and Friction Factor Correlations for Solar Air Heater With Gap in V-Rib With Symmetrical Gap and Staggered Ribs
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031018
.
4.
Kumar
,
A.
, and
Layek
,
A.
,
2022
, “
Heat Transfer Measurement in a Rectangular Channel of Solar Air Heater With Winglet-Type Ribs Using Liquid Crystal Thermography
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041006
.
5.
Nidhul
,
K.
,
Kumar
,
S.
,
Yadav
,
A. K.
, and
Anish
,
S.
,
2020
, “
Influence of Rectangular Ribs on Exergetic Performance in a Triangular Duct Solar Air Heater
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051010
.
6.
Chouksey
,
V. K.
, and
Sharma
,
S. P.
,
2016
, “
Investigations on Thermal Performance Characteristics of Wire Screen Packed Bed Solar Air Heater
,”
Sol. Energy
,
132
, pp.
591
605
.
7.
Garg
,
H. P.
,
Bandyopadhyay
,
B.
, and
Sharma
,
V. K.
,
1981
, “
Investigation of Rock Bed Solar Collector Cum Storage System
,”
Energy Convers. Manage.
,
21
(
4
), pp.
275
282
.
8.
Garg
,
H. P.
,
Sharma
,
V. K.
,
Mahajan
,
R. B.
, and
Bhargave
,
A. K.
,
1985
, “
Experimental Study of an Inexpensive Solar Collector Cum Storage System for Agricultural Uses
,”
Sol. Energy
,
35
(
4
), pp.
321
331
.
9.
Sharma
,
S. P.
,
Saini
,
J. S.
, and
Varma
,
H. K.
,
1991
, “
Thermal Performance of Packed-Bed Solar Air Heaters
,”
Sol. Energy
,
47
(
2
), pp.
59
67
.
10.
Chauhan
,
P. M.
,
Choudhury
,
C.
, and
Garg
,
H. P.
,
1996
, “
Comparative Performance of Coriander Dryer Coupled to Solar Air Heater and Solar Air-Heater-Cum-Rock Bed Storage
,”
Appl. Therm. Eng.
,
16
(
6
), pp.
475
486
.
11.
Hamdan
,
M. A.
,
1998
, “
Investigation of an Inexpensive Solar Collector Storage System
,”
Energy Convers. Manage.
,
39
(
5–6
), pp.
415
420
.
12.
Aboul-Enein
,
S.
,
El-Sebaii
,
A. A.
,
Ramadan
,
M. R. I.
, and
El-Gohary
,
H. G.
,
2000
, “
Parametric Study of a Solar Air Heater With and Without Thermal Storage for Solar Drying Applications
,”
Renewable Energy
,
21
(
3–4
), pp.
505
522
.
13.
El-Sebaii
,
A. A.
,
Aboul-Enein
,
S.
,
Ramadan
,
M. R. I.
, and
El-Bialy
,
E.
,
2007
, “
Year Round Performance of Double Pass Solar Air Heater With Packed Bed
,”
Energy Convers. Manage.
,
48
(
3
), pp.
990
1003
.
14.
Dhiman
,
P.
,
Thakur
,
N. S.
,
Kumar
,
A.
, and
Singh
,
S.
,
2011
, “
An Analytical Model to Predict the Thermal Performance of a Novel Parallel Flow Packed Bed Solar Air Heater
,”
Appl. Energy
,
88
(
6
), pp.
2157
2167
.
15.
Bouadila
,
S.
,
Kooli
,
S.
,
Lazaar
,
M.
,
Skouri
,
S.
, and
Farhat
,
A.
,
2013
, “
Performance of a New Solar Air Heater With Packed-Bed Latent Storage Energy for Nocturnal Use
,”
Appl. Energy
,
110
, pp.
267
275
.
16.
Saxena
,
A.
,
Agarwal
,
N.
, and
Srivastava
,
G.
,
2013
, “
Design and Performance of a Solar Air Heater With Long Term Heat Storage
,”
Int. J. Heat Mass Transfer
,
60
, pp.
8
16
.
17.
Saxena
,
A.
,
Srivastava
,
G.
, and
Tirth
,
V.
,
2015
, “
Design and Thermal Performance Evaluation of a Novel Solar Air Heater
,”
Renewable Energy
,
77
, pp.
501
511
.
18.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2017
, “
Improvement of Thermal Performance of the Finned Plate Solar Air Heater by Using Latent Heat Thermal Storage
,”
Appl. Therm. Eng.
,
123
, pp.
546
553
.
19.
Vijayan
,
S.
,
Arjunan
,
T. V.
,
Kumar
,
A.
, and
Matheswaran
,
M. M.
,
2020
, “
Experimental and Thermal Performance Investigations on Sensible Storage Based Solar Air Heater
,”
J. Energy Storage
,
31
, p.
101620
.
20.
Tiwari
,
G. N.
,
Sumegha
,
C.
, and
Yadav
,
Y. P.
,
1991
, “
Effect of Water Depth on the Transient Performance of a Double Basin Solar Still
,”
Energy Convers. Manage.
,
32
(
3
), pp.
293
301
.
21.
Kumar
,
A.
, and
Das
,
R.
,
2021
, “
Effect of Peripheral Heat Conduction in Salt-Gradient Solar Ponds
,”
J. Energy Storage
,
33
, p.
102084
.
22.
Verma
,
S.
, and
Das
,
R.
,
2021
, “
Transient Study of a Solar Pond Under Heat Extraction From Non-convective and Lower Convective Zones Considering Finite Effectiveness of Exchangers
,”
Sol. Energy
,
223
, pp.
437
448
.
23.
Verma
,
S.
, and
Das
,
R.
,
2020
, “
Revisiting Gradient Layer Heat Extraction in Solar Ponds Through a Realistic Approach
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
041009
.
24.
Verma
,
S.
, and
Das
,
R.
,
2020
, “
Effect of Ground Heat Extraction on Stability and Thermal Performance of Solar Ponds Considering Imperfect Heat Transfer
,”
Sol. Energy
,
198
, pp.
596
604
.
25.
Yoo
,
H.
, and
Pak
,
E. T.
,
1993
, “
Theoretical Model of the Charging Process for Stratified Thermal Storage Tanks
,”
Sol. Energy
,
51
(
6
), pp.
513
519
.
You do not currently have access to this content.