Abstract

Automobile radiator which is one of the vital components used for engine cooling in vehicles is expected to provide higher thermal performance without changing the exterior dimensions of the radiator with the development of engine technology. This situation necessitates changes in both design and operating parameters in the currently used radiator. In the present study, all fundamental parameters affecting the thermal and hydraulic performance of an automobile radiator are evaluated and optimized with statistical methods. Optimization study is carried out using Taguchi and ANOVA methods for two specified objective functions (heat transfer and pressure drop). The order of importance and impact rates for each design and operating parameter, the best and worst working conditions in terms of both target functions are determined. Air velocity, air inlet temperature, coolant inlet temperature, and fin pitch are found to be the most effective parameters on the heat transfer with a contribution ratio of 88%. The best and worst working conditions are obtained for the heat transfer and under these working conditions, they are calculated as 43.68 kW and 1.63 kW, respectively. When the system is examined in terms of the pressure drop, the results show that the coolant flowrate and tube height have a great impact with a contribution ratio of 67.04% and 32.06%, respectively. Lastly, the maximum and minimum pressure drop within the studied operating condition range is determined as 20.68 kPa and 0.12 kPa, respectively.

References

1.
Wang
,
C. C.
,
Fu
,
W. L.
, and
Chang
,
C. T.
,
1997
, “
Heat Transfer and Friction Characteristics of Typical Wavy Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid. Sci.
,
14
(
2
), pp.
174
186
.
2.
Torii
,
K.
,
Kwak
,
K. M.
, and
Nishino
,
K.
,
2002
, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3795
3801
.
3.
Habibian
,
S. H.
,
Abolmaali Mostafazade
,
A.
, and
Afshin
,
H.
,
2018
, “
Numerical Investigation of the Effects of Fin Shape, Antifreeze and Nanoparticles on the Performance of Compact Finned-Tube Heat Exchangers for Automobile Radiator
,”
Appl. Therm. Eng.
,
133
, pp.
248
260
.
4.
Li
,
W.
,
Khan
,
T. A.
,
Tang
,
W.
, and
Minkowycz
,
W. J.
,
2018
, “
Numerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
111801
.
5.
Chan Kang
,
H.
, and
Jun
,
G. W.
,
2011
, “
Heat Transfer and Flow Resistance Characteristics of Louver Fin Geometry for Automobile Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
10
), p.
101802
.
6.
Sadeghianjahromi
,
A.
,
Kheradmand
,
S.
,
Nemati
,
H.
, and
Wang
,
C. C.
,
2020
, “
Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers via Innovative Compound Designs
,”
Int. J. Therm. Sci.
,
149
, p.
106211
.
7.
Krásný
,
I.
,
Astrouski
,
I.
, and
Raudenský
,
M.
,
2016
, “
Polymeric Hollow Fiber Heat Exchanger as an Automotive Radiator
,”
Appl. Therm. Eng.
,
108
, pp.
798
803
.
8.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2014
, “
Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid-Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), pp.
1
6
.
9.
Alosious
,
S.
,
Sarath
,
S. R.
,
Nair
,
A. R.
, and
Krishnakumar
,
K.
,
2018
, “
Investigations on Convective Heat Transfer Enhancement in Circular Tube Radiator Using Al2O3 and CuO Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051012
.
10.
Ray
,
D. R.
, and
Das
,
D. K.
,
2014
, “
Superior Performance of Nanofluids in an Automotive Radiator
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041002
.
11.
Oliet
,
C.
,
Oliva
,
A.
,
Castro
,
J.
, and
Pérez-Segarra
,
C. D.
,
2007
, “
Parametric Studies on Automotive Radiators
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
2033
2043
.
12.
Canbolat
,
A. S.
, and
Turkan
,
B.
,
2016
, “
Numerical Investigation Into Thermal Performance Parameters of Automobile Radiators
,”
J. Therm. Sci. Technol.
,
36
, pp.
29
40
.
13.
Taler
,
D.
,
2019
, “
Simulation of the Operation of The Car Radiator with a Laminar, Transitional, and Turbulent Regime of Liquid Flow in the Tubes
,”
Therm. Sci.
,
23
(
4
), pp.
1311
1321
.
14.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Bashir
,
M. H.
,
Khan
,
A. R.
,
Ahmad
,
K. N.
, and
Khan
,
S.
,
2012
, “
CFD Applications in Various Heat Exchangers Design: A Review
,”
Appl. Therm. Eng.
,
32
, pp.
1
12
.
15.
Sahin
,
B.
,
2007
, “
A Taguchi Approach for Determination of Optimum Design Parameters for a Heat Exchanger Having Circular-Cross Sectional Pin Fins
,”
Heat Mass Transfer
,
43
(
5
), pp.
493
502
.
16.
Zeng
,
M.
,
Tang
,
L. H.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2010
, “
Optimization of Heat Exchangers With Vortex-Generator Fin by Taguchi Method
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1775
1783
.
17.
Gunes
,
S.
,
Manay
,
E.
,
Senyigit
,
E.
, and
Ozceyhan
,
V.
,
2011
, “
A Taguchi Approach for Optimization of Design Parameters in a Tube With Coiled Wire Inserts
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2568
2577
.
18.
Turgut
,
E.
,
Cakmak
,
G.
, and
Yildiz
,
C.
,
2012
, “
Optimization of the Concentric Heat Exchanger With Injector Turbulators by Taguchi Method
,”
Energy Convers. Manage.
,
53
(
1
), pp.
268
275
.
19.
Hsieh
,
C. T.
, and
Jang
,
J. Y.
,
2012
, “
Parametric Study and Optimization of Louver Finned-Tube Heat Exchangers by Taguchi Method
,”
Appl. Therm. Eng.
,
42
, pp.
101
110
.
20.
Kotcioglu
,
I.
,
Cansız
,
A.
, and
Nasiri Khalaji
,
M.
,
2013
, “
Experimental Investigation for Optimization of Design Parameters in a Rectangular Duct With Plate-Fins Heat Exchanger by Taguchi Method
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
604
613
.
21.
Chamoli
,
S.
,
Yu
,
P.
, and
Kumar
,
A.
,
2016
, “
Multi-response Optimization of Geometric and Flow Parameters in a Heat Exchanger Tube With Perforated Disk Inserts by Taguchi Grey Relational Analysis
,”
Appl. Therm. Eng.
,
103
, pp.
1339
1350
.
22.
Wang
,
H.
,
Liu
,
Y. W.
,
Yang
,
P.
,
Wu
,
R. J.
, and
He
,
Y. L.
,
2016
, “
Parametric Study and Optimization of H-Type Finned Tube Heat Exchangers Using Taguchi Method
,”
Appl. Therm. Eng.
,
103
, pp.
128
138
.
23.
Celik
,
N.
,
Pusat
,
G.
, and
Turgut
,
E.
,
2018
, “
Application of Taguchi Method and Grey Relational Analysis on a Turbulated Heat Exchanger
,”
Int. J. Therm. Sci.
,
124
, pp.
85
97
.
24.
Bademlioglu
,
A. H.
,
Canbolat
,
A. S.
,
Yamankaradeniz
,
N.
, and
Kaynakli
,
O.
,
2018
, “
Investigation of Parameters Affecting Organic Rankine Cycle Efficiency by Using Taguchi and ANOVA Methods
,”
Appl. Therm. Eng.
,
145
, pp.
221
228
.
25.
Cengel
,
Y.
, and
Ghajar
,
A.
,
2006
,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
26.
Shah
,
R. K.
,
1975
, “
Thermal Entry Length Solutions for the Circular Tube and Parallel Plates
,”
Proceedings of the Third National Heat and Mass Transfer Conference
,
Bombay, India
,
Dec. 11–13
.
27.
Vakili
,
M.
,
Mohebbi
,
A.
, and
Hashemipour
,
H.
,
2013
, “
Experimental Study on Convective Heat Transfer of TiO2 Nanofluids
,”
Heat Mass Transfer
,
49
(
8
), pp.
1159
1165
.
28.
Hussein
,
A. M.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2014
, “
Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System
,”
Case Stud. Therm. Eng.
,
2
, pp.
50
61
.
29.
Hussein
,
A. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Sharma
,
K. V.
,
2014
, “
Heat Transfer Augmentation of a Car Radiator Using Nanofluids
,”
Heat Mass Transfer
,
50
(
11
), pp.
1553
1561
.
30.
Barzegarian
,
R.
,
Aloueyan
,
A.
, and
Yousefi
,
T.
,
2017
, “
Thermal Performance Augmentation Using Water Based Al2O3-Gamma Nanofluid in a Horizontal Shell and Tube Heat Exchanger Under Forced Circulation
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
52
59
.
31.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
32.
Devireddy
,
S.
,
Mekala
,
C. S. R.
, and
Veeredhi
,
V. R.
,
2016
, “
Improving the Cooling Performance of Automobile Radiator With Ethylene Glycol Water Based TiO2 Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
78
, pp.
121
126
.
33.
Goudarzi
,
K.
, and
Jamali
,
H.
,
2017
, “
Heat Transfer Enhancement of Al2O3-EG Nanofluid in a Car Radiator With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
118
, pp.
510
517
.
34.
Oliveira
,
G. A.
,
Cardenas Contreras
,
E. M.
, and
Bandarra Filho
,
E. P.
,
2017
, “
Experimental Study on the Heat Transfer of MWCNT/Water Nanofluid Flowing in a Car Radiator
,”
Appl. Therm. Eng.
,
111
, pp.
1450
1456
.
35.
Ali
,
H. M.
,
Ali
,
H.
,
Liaquat
,
H.
,
Bin Maqsood
,
H. T.
, and
Nadir
,
M. A.
,
2015
, “
Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Using ZnO-Water Nanofluids
,”
Energy
,
84
, pp.
317
324
.
36.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiators of Tubular Type
,
University of California Press
,
Berkeley, CA
.
37.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
504
604
.
38.
Vithayasai
,
S.
,
Kiatsiriroat
,
T.
, and
Nuntaphan
,
A.
,
2006
, “
Effect of Electric Field on Heat Transfer Performance of Automobile Radiator at Low Frontal Air Velocity
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2073
2078
.
39.
Churchill
,
S. W.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
2
), pp.
300
306
.
40.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Naraki
,
M.
, and
Vermahmoudi
,
Y.
,
2013
, “
Experimental Study of Overall Heat Transfer Coefficient in the Application of Dilute Nanofluids in the Car Radiator
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
8
16
.
41.
Schmidt
,
T. E.
,
1949
, “
Heat Transfer Calculation for Extended Surfaces
,”
Refrig. Eng.
,
57
, pp.
351
357
.
42.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2005
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
.
43.
Ross
,
P.
,
1996
,
Taguchi Techniques for Quality Engineering
,
McGraw-Hill
,
New York
.
44.
Canbolat
,
A. S.
,
Bademlioglu
,
A. H.
,
Arslanoglu
,
N.
, and
Kaynakli
,
O.
,
2019
, “
Performance Optimization of Absorption Refrigeration Systems Using Taguchi, ANOVA and Grey Relational Analysis Methods
,”
J. Cleaner Prod.
,
229
, pp.
874
885
.
45.
Naraki
,
M.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Vermahmoudi
,
Y.
,
2013
, “
Parametric Study of Overall Heat Transfer Coefficient of CuO/Water Nanofluids in a Car Radiator
,”
Int. J. Therm. Sci.
,
66
, pp.
82
90
.
46.
Selvam
,
C.
,
Raja Solaimalai
,
R.
,
Mohan Lal
,
D.
, and
Harish
,
S.
,
2017
, “
Overall Heat Transfer Coefficient Improvement of an Automobile Radiator With Graphene Based Suspensions
,”
Int. J. Heat Mass Transfer
,
115
, pp.
580
588
.
You do not currently have access to this content.