Abstract

Fixed-bed regenerators (FBRs) have high sensible effectiveness, making them an energy-efficient air-to-air energy recovery exchanger (AAEE) to reduce energy consumption for ventilation in buildings. FBRs operate by alternately storing and releasing heat in fixed exchangers, which result in outlet temperature that varies with time during both heating and cooling periods. This variation in FBR's outlet temperature adds a new optimization variable that needs to be considered when designing FBRs. For example, in heating, ventilating, and air conditioning (HVAC) systems, careful design is required to prevent large variations in FBR’s outlet temperature (temperature swing (TS)), which might deteriorate occupant thermal comfort and introduce a variable load on the HVAC system. In this paper, a correlation for TS is developed as a function of FBR design parameters. FBRs optimization is performed considering TS as an additional objective to the traditional parameters of exchanger effectiveness, pressure drop, payback period (PBP), and mass. A selection procedure (decision-making procedure) is also integrated into the optimization process to select the optimized FBRs from Pareto fronts. The results show that when TS is included as an additional objective to the optimization and selection process, the selected optimized FBRs have higher mass and effectiveness.

References

1.
Federation of European Heating, Ventilation and Air Conditioning Associations
,
2020
,
REHVA COVID-19 Guidance Document, How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces
.
2.
ASHRAE TC 5.5
,
2020
,
Practical Guidance for Epidemic Operation of Energy Recovery Ventilation Systems
.
3.
Justo Alonso
,
M.
,
Liu
,
P.
,
Mathisen
,
H. M.
,
Ge
,
G.
, and
Simonson
,
C.
,
2015
, “
Review of Heat/Energy Recovery Exchangers for Use in ZEBs in Cold Climate Countries
,”
Build. Environ.
,
84
, pp.
228
237
.
4.
Krishnan
,
E. N.
,
Ramin
,
H.
,
Shakouri
,
M.
,
Wilson
,
L. D.
, and
Simonson
,
C. J.
,
2020
, “
Development of a Small-Scale Test Facility for Effectiveness Evaluation of Fixed-Bed Regenerators
,”
Appl. Therm. Eng.
,
174
, p.
115263
.
5.
Tempeff North America
,
2020
, “
How Energy Recovery Ventilation Works
,” https://www.tempeff.com/how-heat-recovery-works/, Accessed January 6, 2020.
6.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2004
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons, Inc.
,
New Jersey
.
7.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
268
289
.
8.
Zarrinehkafsh
,
M. T.
, and
Sadrameli
,
S. M.
,
2004
, “
Simulation of Fixed Bed Regenerative Heat Exchangers for Flue Gas Heat Recovery
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
373
382
.
9.
Nizovtsev
,
M. I.
,
Borodulin
,
V. Y.
, and
Letushko
,
V. N.
,
2017
, “
Influence of Condensation on the Efficiency of Regenerative Heat Exchanger for Ventilation
,”
Appl. Therm. Eng.
,
111
, pp.
997
1007
.
10.
Borodulin
,
V. Y.
, and
Nizovtsev
,
M. I.
,
2018
, “
A Criterial Analysis of the Effectiveness of Air-to-Air Heat Exchangers With Periodic Change of Airflow Direction
,”
Appl. Therm. Eng.
,
130
, pp.
1246
1255
.
11.
Chang
,
C. C.
,
Lai
,
C. H.
,
Yang
,
C. M.
,
Chiang
,
Y. C.
, and
Chen
,
S. L.
,
2013
, “
Thermal Performance Enhancement of a Periodic Total Heat Exchanger Using Energy-Storage Material
,”
Energy Build.
,
67
, pp.
579
586
.
12.
Ramin
,
H.
,
Krishnan
,
E. N.
,
Gurubalan
,
A.
,
Alabi
,
W. O.
, and
Simonson
,
C. J.
, “
Transient Sensor Errors and Their Impact on Fixed-Bed Regenerator (FBR) Testing Standards Transient Sensor Errors and Their Impact on Fixed-Bed Regenerator (FBR) Testing Standards
,”
Sci. Technol. Built Environ.
,
27
(
5
), pp.
1
40
.
13.
Shakouri
,
M.
,
Krishnan
,
E. N.
,
Karoyo
,
A. H.
,
Dehabadi
,
L.
,
Wilson
,
L. D.
, and
Simonson
,
C. J.
,
2019
, “
Water Vapor Adsorption-Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels
,”
ACS Omega
,
4
(
11
), pp.
14378
14389
.
14.
Ramin
,
H.
,
Krishnan
,
E. N.
,
Annadurai
,
G.
, and
Simonson
,
C. J.
,
2020
, “
Transient Performance of Fixed-Bed Regenerators for Energy Recovery in Building Applications
,”
Proceedings of the ASME 2020 Heat Transfer Summer Conference HT2020
,
Orlando, FL, Virtual, Online
,
July 13–15
, pp.
1
7
.
15.
Krishnan
,
E. N.
,
Ramin
,
H.
,
Annadurai
,
G.
,
Alabi
,
W. O.
, and
Simonson
,
C. J.
,
2021
, “
Methodologies for Predicting the Effectiveness of Full-Scale Fixed-Bed Regenerators From Small-Scale Test Data
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051019
.
16.
Ramin
,
H.
,
Krishnan
,
E. N.
, and
Simonson
,
C. J.
,
2020
, “
Effectiveness of Fixed-Bed Regenerators for Energy Recovery in Buildings Applications
,”
E3S Web Conf.
,
172
, pp.
1
8
.
17.
Ramin
,
H.
,
Krishnan
,
E. N.
,
Gurubalan
,
A.
,
Alabi
,
W. O.
, and
Simonson
,
C. J.
,
2021
, “
A Transient Numerical Model for Sensible Fixe D-bed Regenerator in HVAC Applications
,”
Int. J. Heat Mass Transfer
,
177
, p.
121550
.
18.
Güllüce
,
H.
, and
Özdemir
,
K.
,
2020
, “
Design and Operational Condition Optimization of a Rotary Regenerative Heat Exchanger
,”
Appl. Therm. Eng.
,
177
, p.
115341
.
19.
Wang
,
L.
,
Bu
,
Y.
,
Li
,
D.
,
Tang
,
C.
, and
Che
,
D.
,
2019
, “
Single and Multi-Objective Optimizations of Rotary Regenerative Air Preheater for Coal-Fired Power Plant Considering the Ammonium Bisulfate Deposition
,”
Int. J. Therm. Sci.
,
136
, pp.
52
59
.
20.
Lee
,
Y. M.
,
Chung
,
H.
,
Kim
,
S. H.
,
Bae
,
H. S.
, and
Cho
,
H. H.
,
2017
, “
Optimization of the Heating Element in a Gas-Gas Heater Using an Integrated Analysis Model
,”
Energies
,
10
(
12
), pp.
1
19
.
21.
Raja
,
B. D.
,
Jhala
,
R. L.
, and
Patel
,
V.
,
2016
, “
Multi-Objective Optimization of a Rotary Regenerator Using Tutorial Training and Self-Learning Inspired Teaching-Learning Based Optimization Algorithm (TS-TLBO)
,”
Appl. Therm. Eng.
,
93
, pp.
456
467
.
22.
Mioralli
,
P. C.
, and
Ganzarolli
,
M. M.
,
2013
, “
Thermal Analysis of a Rotary Regenerator With Fixed Pressure Drop or Fixed Pumping Power
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
187
197
.
23.
Tušek
,
J.
,
Kitanovski
,
A.
, and
Poredoš
,
A.
,
2013
, “
Geometrical Optimization of Packed-Bed and Parallel-Plate Active Magnetic Regenerators
,”
Int. J. Refrig.
,
36
(
5
), pp.
1456
1464
.
24.
Rao
,
R. V.
, and
Patel
,
V.
,
2011
, “
Design Optimization of Rotary Regenerator Using Artificial Bee Colony Algorithm
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
8
), pp.
1088
1098
.
25.
Dallaire
,
J.
,
Gosselin
,
L.
, and
da Silva
,
A. K.
,
2010
, “
Conceptual Optimization of a Rotary Heat Exchanger With a Porous Core
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
454
462
.
26.
Sanaye
,
S.
, and
Hajabdollahi
,
H.
,
2009
, “
Multi-Objective Optimization of Rotary Regenerator Using Genetic Algorithm
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1967
1977
.
27.
Natarajan
,
E.
, and
Pitchandi
,
K.
,
2009
, “
Thermodynamic Optimization of Periodic Regenerative Heat Exchanger
,”
World Acad. Sci. Eng. Technol.
,
32
, pp.
509
517
.
28.
Chung
,
J. D.
,
Lee
,
D. Y.
, and
Yoon
,
S. M.
,
2009
, “
Optimization of Desiccant Wheel Speed and Area Ratio of Regeneration to Dehumidification as a Function of Regeneration Temperature
,”
Sol. Energy
,
83
(
5
), pp.
625
635
.
29.
Sanaye
,
S.
,
Jafari
,
S.
, and
Ghaebi
,
H.
,
2008
, “
Optimum Operational Conditions of a Rotary Regenerator Using Genetic Algorithm
,”
Energy Build.
,
40
(
9
), pp.
1637
1642
.
30.
Gao
,
W.
,
Hodgson
,
P. D.
, and
Kong
,
L.
,
2006
, “
Numerical Analysis of Heat Transfer and the Optimization of Regenerators
,”
Numer. Heat Transf. Part A Appl.
,
50
(
1
), pp.
63
78
.
31.
Jassim
,
R. K.
,
2003
, “
Evaluation of Combined Heat and Mass Transfer Effect on the Thermoeconomic Optimization of an Air-Conditioning Rotary Regenerator
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
724
733
.
32.
Shen
,
C. M.
, and
Worek
,
W. M.
,
1993
, “
Second-Law Optimization of Regenerative Heat Exchangers, Including the Effect of Matrix Heat Conduction
,”
Energy
,
18
(
4
), pp.
355
363
.
33.
Simonson
,
C. J.
, and
Besant
,
R. W.
,
1999
, “
Energy Wheel Effectiveness: Part I-Development of Dimensionless Groups
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2161
2170
.
34.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
London
.
35.
Ramin
,
H.
,
Krishnan
,
E. N.
, and
Simonson
,
C. J.
,
2019
, “
Fixed Bed Regenerators for HVAC Applications
,”
27th Canadian Congress on Applied Mechanics
,
Sherbrooke, QC, Canada
,
May 27–30
, pp.
1
6
.
36.
Mathworks
,
2019
, “
MATLAB: 2019b
,” www.mathworks.comwww.mathworks.com
37.
Lv
,
C.
,
Xing
,
Y.
,
Zhang
,
J.
,
Na
,
X.
,
Li
,
Y.
,
Liu
,
T.
,
Cao
,
D.
, and
Wang
,
F. Y.
,
2018
, “
Levenberg-Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System
,”
IEEE Trans. Ind. Informatics
,
14
(
8
), pp.
3436
3446
.
38.
Ghasemi
,
A.
,
Hassani
,
M.
,
Goodarzi
,
M.
,
Afrand
,
M.
, and
Manafi
,
S.
,
2019
, “
Appraising Influence of COOH-MWCNTs on Thermal Conductivity of Antifreeze Using Curve Fitting and Neural Network
,”
Phys. A Stat. Mech. Appl.
,
514
, pp.
36
45
.
39.
Safaei
,
M. R.
,
Hajizadeh
,
A.
,
Afrand
,
M.
,
Qi
,
C.
,
Yarmand
,
H.
, and
Zulkifli
,
N. W. B. M.
,
2019
, “
Evaluating the Effect of Temperature and Concentration on the Thermal Conductivity of ZnO-TiO2/EG Hybrid Nanofluid Using Artificial Neural Network and Curve Fitting on Experimental Data
,”
Phys. A Stat. Mech. Appl.
,
519
, pp.
209
216
.
40.
Asiedu
,
Y.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2004
, “
Wheel Selection
for
Heat and Energy Recovery in Simple HVAC Ventilation Design Problems
,”
2004 Winter Meet.—Tech. Symp. Pap. Am. Soc. Heating, Refrig. Air-Conditioning Eng.
,
Anaheim, CA
,
Jan. 24–28
, pp.
375
392
.
41.
Department of Energy
,
2020
, “
Climate Consultant
,” Version: 5.3 Beta, United States Department of Energy, http://www.energy.gov/
42.
Ramin
,
H.
,
Hanafizadeh
,
P.
, and
Akhavan-Behabadi
,
M. A.
,
2016
, “
Determination of Optimum Insulation Thickness in Different Wall Orientations and Locations in Iran
,”
Adv. Build. Energy Res.
,
10
(
2
), pp.
149
171
.
43.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
John Wiley & Sons, Ltd.
,
New York
.
44.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
45.
Kumar
,
A.
,
Sah
,
B.
,
Singh
,
A. R.
,
Deng
,
Y.
,
He
,
X.
,
Kumar
,
P.
, and
Bansal
,
R. C.
,
2017
, “
A Review of Multi Criteria Decision Making (MCDM) Towards Sustainable Renewable Energy Development
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
596
609
.
46.
Papathanasiou
,
J.
, and
Ploskas
,
N.
,
2018
,
Multiple Criteria Decision—Aid Methods (MCDA)—Methods, Examples and Python Implementations
,
Springer
,
Gewerbestrasse
.
47.
Gaddala
,
U. M.
, and
Devanuri
,
J. K.
,
2020
, “
A Hybrid Decision-Making Method for the Selection of a Phase Change Material for Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041020
.
You do not currently have access to this content.