Abstract

This study presents a test campaign carried out at IFPEN aimed at understanding and characterizing the thermal behavior of electric motors incorporating direct oil cooling. Several cooling systems and oils are evaluated at different operating points, and the effect of parameter variations is investigated. Experimentations are defined and performed to understand and quantify the impact of different oils and direct cooling systems on the performances of the electrical machine. The test results make it possible to verify and quantify the gain on the thermal behavior obtained by adding an oil injection system directly to the active parts of the machine in addition to an indirect water jacket cooling. This gain is observed for a representative set of operating points and oil injection parameters. The impact of physicochemical properties of oils on direct cooling performance is assessed by a comparison of several oils. The viscous friction losses are also identified. The results presented include a repeatability and reproducibility study for speed values up to 14 krpm and continuous powers up to 60 kW.

References

1.
Davin
,
T.
,
Pelle
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2015
, “
Experimental Study of Oil Cooling Systems for Electric Motors
,”
Appl. Therm. Eng.
,
75
, pp.
1
13
.
2.
Gai
,
Y.
,
Kimiabeigi
,
M.
,
Chuan Chong
,
Y.
,
Widmer
,
J. D.
,
Deng
,
X.
,
Popescu
,
M.
, and
Steven
,
A.
,
2019
, “
Cooling of Automotive Traction Motors: Schemes, Examples, and Computation Methods
,”
IEEE Trans. Ind. Electron.
,
66
(
3
), p.
3
.
3.
Li
,
B.
,
Kuo
,
H.
,
Wang
,
X.
,
Chen
,
Y.
,
Wang
,
Y.
,
Gerada
,
D.
,
Worall
,
S.
,
Stone
,
I.
, and
Yan
,
Y.
,
2020
, “
Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles
,”
Automot. Innov.
,
3
(
4
), pp.
299
316
.
4.
Bertin
,
Y.
,
1999
, “
Refroidissement des Machines électriques Tournantes
,”
Techniques de l'Ingénieur, traité Génie électrique, D3460 v1
.
5.
Bertin
,
Y.
,
2006
, “
Refroidissement des Machines Tournantes. Études Paramétriques
,”
Techniques de l'Ingénieur, traité Génie électrique., D3462 v1
.
6.
Gundabattini
,
E.
,
Mystkowski
,
A.
,
Idzkowski
,
A.
,
Raja Singh
,
R.
, and
Solomon
,
D. G.
,
2021
, “
Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review
,”
Energies
,
14
(
5
), p.
1472
.
7.
Mock
,
P.
,
2019
, “
CO2 Emission Standards for Passenger Cars and Light-Commercial Vehicles in the European Union
,”
Policy Update
, https://theicct.org/sites/default/files/publications/EU-LCV-CO2-2030_ICCTupdate_20190123.pdf
8.
McLeod
,
P.
,
Bradley
,
K. J.
,
Ferrah
,
A.
,
Magill
,
R.
,
Clare
,
J. C.
,
Wheeler
,
P.
, and
Sewell
,
P.
,
1998
, “
High Precision Calorimetry for the Measurement of the Efficiency of Induction Motors
,”
Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting
,
St. Louis, MO
,
Oct. 12–15
, IEEE, Vol. 1, pp.
304
311
.
9.
Wang
,
R.
,
Wang
,
Y.
,
Feng
,
C.
, and
Zhang
,
X.
,
2015
, “
Powertrain Preheating System of Tracked Hybrid Electric Vehicle in Cold Weather
,”
Appl. Therm. Eng.
,
91
, pp.
252
258
.
10.
He
,
H.
,
Zhou
,
N.
, and
Sun
,
C.
,
2017
, “
Efficiency Decrease Estimation of a Permanent Magnet Synchronous Machine With Demagnetization Faults
,”
Energy Procedia
,
105
, pp.
2718
2724
.
11.
Park
,
M. H.
, and
Kim
,
S. C.
,
2019
, “
Thermal Characteristics and Effects of Oil Spray Cooling on In-Wheel Motors in Electric Vehicles
,”
Appl. Therm. Eng.
,
152
, pp.
582
593
.
12.
Staton
,
D. A.
,
Popescu
,
M.
,
Hawkins
,
D.
,
Boglietti
,
A.
, and
Cavagnino
,
A.
,
2010
, “
Influence of Different End Region Cooling Arrangements on End-Winding Heat Transfer Coefficients in Electrical Machines
,”
IEEE Energy Conversion Congress and Exposition
,
Atlanta, GA
,
Sept. 12–16
, IEEE, pp.
1298
1305
.
13.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.
14.
Jafari
,
M.
,
2014
, “
Analysis of heat transfer in Spray Cooling Systems Using Numerical Simulations
,”
Electronic Theses and Dissertations, Paper No. 5028
, http://scholar.uwindsor.ca/etd
15.
Ehrenpreis
,
C.
,
Bahi
,
H. E.
,
Xu
,
H.
,
Roux
,
G.
,
Kneer
,
R.
, and
Rohlfs
,
W.
,
2020
, “
Physically-Motivated Figure of Merit (FOM) Assessing the Cooling Performance of Fluids Suitable for the Direct Cooling of Electrical Components
,”
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, FL
,
July 21–23
, IEEE, pp.
422
429
.
16.
Boglietti
,
A.
,
Cavagnino
,
A.
,
Staton
,
D.
,
Shanel
,
M.
,
Mueller
,
M.
, and
Mejuto
,
C.
,
2009
, “
Evolution and Modern Approaches for Thermal Analysis of Electrical Machines
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
871
882
.
17.
Boglietti
,
A.
,
Cossale
,
M.
,
Popescu
,
M.
, and
Staton
,
D. A.
,
2019
, “
Electrical Machines Thermal Model: Advanced Calibration Techniques
,”
IEEE Trans. Ind. Appl.
,
55
(
3
), pp.
2620
2628
.
18.
Vanhaelst
,
R.
,
Kheir
,
A.
, and
Czajka
,
J.
,
2016
, “
A Systematic Analysis of the Friction Losses on Bearings of Modern Turbocharger
,”
Combust. Engines
,
164
(
1
), pp.
22
31
.
19.
Dairay
,
T.
,
Fortuné
,
V.
,
Lamballais
,
E.
, and
Brizzi
,
L.
,
2015
, “
Direct Numerical Simulation of a Turbulent Jet Impinging on a Heated Wall
,”
J. Fluid Mech.
,
764
, pp.
362
394
.
20.
Cornacchia
,
I.
,
Pilla
,
G.
,
Chareyron
,
B.
,
Bruneaux
,
G.
,
Kaiser
,
S.
, and
Poubeau
,
A.
,
2021
, “
Development of an Experimental Methodology to Characterize Liquid Cooling Systems for Electric Motors
,”
IEEE International Electric Machines & Drives Conference
,
Hartford, CT
,
May 17–20
, IEEE, pp.
1
7
.
21.
Wood
,
L. G.
,
1950
, “
The Change of Viscosity of Oils Containing High Polymers When Subjected to High Rates of Shear
,”
Br. J. Appl. Phys.
,
1
(
8
), p.
202
206
.
22.
Lehmann
,
R.
,
Petuchow
,
A.
,
Moullion
,
M.
,
Künzler
,
M.
,
Windel
,
C.
, and
Gauterin
,
F.
,
2020
, “
Fluid Choice Based on Thermal Model and Performance Testing for Direct Cooled Electric Drive
,”
Energies
,
13
(
22
), p.
5867
.
23.
Liu
,
C.
,
Xu
,
Z.
,
Gerada
,
D.
,
Li
,
J.
,
Gerada
,
C.
,
Chong
,
Y. C.
,
Popescu
,
M.
,
Goss
,
J.
,
Staton
,
D.
, and
Zhang
,
H.
,
2020
, “
Experimental Investigation on Oil Spray Cooling With Hairpin Windings
,”
IEEE Trans. Ind. Electron.
,
67
(
9
), pp.
7343
7353
.
24.
Ha
,
T.
, and
Kim
,
D. K.
,
2021
, “
Study of Injection Method for Maximizing Oil-Cooling Performance of Electric Vehicle Motor With Hairpin Winding
,”
Energies
,
14
(
3
), p.
747
.
You do not currently have access to this content.