Abstract

Air-cooled finned heatsink (FHS) are more compact than water-cooled heatsink due to no water channel, which is beneficial to simplify the structure of the cooling side of the thermoelectric generator (TEG) system. Therefore, a mini channel finned heatsink (MCFHS) was designed in this study based on Venturi effect. In this study, the mathematical model of TEG with MCFHS and FHS were developed and verified. The effects of the heating temperature and air flow velocity around the heatsinks on the TEG performance were analyzed and demonstrated. The TEG performance was investigated in terms of the temperatures of the two sides of the TEG, the TEG voltage, and the TEG efficiency. The results revealed that the smaller thermal resistance of heatsink is favorable for greater output of TEG. And the use of the MCFHS can effectively improve the performance of the TEG under different conditions. The maximum TEG efficiency with MCFHS could be 155% higher than the TEG with FHS.

References

1.
Elghool
,
A.
,
Basrawi
,
F.
,
Ibrahim
,
T. K.
,
Habib
,
K.
,
Ibrahim
,
H.
, and
Idris
,
D. M. N. D.
,
2017
, “
A Review on Heat Sink for Thermo-Electric Power Generation: Classifications and Parameters Affecting Performance
,”
Energy Convers. Manage.
,
134
, pp.
260
277
.
2.
Wang
,
J. B.
,
Li
,
X. H.
,
Wang
,
J.
,
Zhu
,
T.
, and
Bao
,
Y. C.
,
2020
, “
Thermal Performance Evaluation of a Thermoelectric Cooler Coupled with Corona Wind
,”
Appl. Therm. Eng.
,
179
(
301
), p.
115753
.
3.
Afshari
,
F.
,
2020
, “
Experimental Study for Comparing Heating and Cooling Performance of Thermoelectric Peltier
,”
J. Polytech.
,
0900
(
3
), pp.
889
894
.
4.
Nie
,
X.
,
Jiang
,
H.
,
Sang
,
X.
,
Wei
,
P.
,
Zhu
,
W.
,
Zhao
,
W.
, and
Zhang
,
Q.
,
2020
, “
Numerical Simulation and Structural Optimization of Multi-Stage Planar Thermoelectric Coolers
,”
Phys. Status Solidi A
,
217
(
22
), p.
2000248
5.
Afshari
,
F.
,
2020
, “
Experimental and Numerical Investigation on Thermoelectric Coolers for Comparing Air-to-Water to Air-to-Air Refrigerators
,”
J. Therm. Anal. Calorim.
,
144
(
3
), pp.
855
868
.
6.
Qiu
,
C.
, and
Shi
,
W.
,
2020
, “
Comprehensive Modeling for Optimized Design of a Thermoelectric Cooler With Non-Constant Cross-Section: Theoretical Considerations
,”
Appl. Therm. Eng.
,
176
, p.
115384
.
7.
Shittu
,
S.
,
Li
,
G.
,
Zhao
,
X.
,
Ma
,
X.
,
Akhlaghi
,
Y. G.
, and
Fan
,
Y.
,
2020
, “
Comprehensive Study and Optimization of Concentrated Photovoltaic-Thermoelectric Considering All Contact Resistances
,”
Energy Convers. Manage.
,
205
, p.
112422
.
8.
Gu
,
W.
,
Ma
,
T.
,
Song
,
A.
,
Li
,
M.
, and
Shen
,
L.
,
2019
, “
Mathematical Modelling and Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System
,”
Energy Convers. Manage.
,
198
, p.
111800
.
9.
Verma
,
V.
,
Rana
,
K. B.
, and
Sharma
,
S. S.
,
2020
, “
Experimental Study and Comparative Analysis of Modified Solar Paraboloidal Dish–Thermoelectric Generator Systems
,”
Environ. Sci. Pollut. Res.
,
28
(
4
), pp.
3983
3993
.
10.
Carvalhaes-Dias
,
P.
,
Cabot
,
A.
, and
Siqueira Dias
,
J. A.
,
2018
, “
Evaluation of the Thermoelectric Energy Harvesting Potential at Different Latitudes Using Solar Flat Panels Systems With Buried Heat Sink
,”
Appl. Sci.
,
8
(
12
), p.
2641
.
11.
Wang
,
N.
,
Gao
,
C.
,
Ding
,
C.
,
Jia
,
H. Z.
,
Sui
,
G. R.
, and
Gao
,
X. M.
,
2019
, “
A Thermal Management System to Reuse Thermal Waste Released by High-Power Light-Emitting Diodes
,”
IEEE Trans. Electron Devices
,
66
(
11
), pp.
4790
4797
.
12.
Khalil
,
H.
, and
Hassan
,
H.
,
2019
, “
Enhancement Thermoelectric Generators Output Power From Heat Recovery of Chimneys by Using Flaps
,”
J. Power Sources
,
443
, p.
227266
.
13.
Khalil
,
H.
, and
Hassan
,
H.
,
2020
, “
Enhancement of Waste Heat Recovery From Vertical Chimney via Thermoelectric Generators by Heat Spreader
,”
Process Saf. Environ. Prot.
,
140
, pp.
314
329
.
14.
Angeline
,
A. A.
,
Jayakumar
,
J.
,
Asirvatham
,
L. G.
,
Marshal
,
J. J.
, and
Wongwises
,
S.
,
2017
, “
Power Generation Enhancement With Hybrid Thermoelectric Generator Using Biomass Waste Heat Energy
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
1
12
.
15.
Zheng
,
Y.
,
Hu
,
J.
,
Li
,
G.
,
Zhu
,
L.
, and
Guo
,
W.
,
2018
, “
Testing and Optimizing a Stove-Powered Thermoelectric Generator With Fan Cooling
,”
Materials
,
11
(
6
), pp.
1
17
.
16.
Zaghari
,
B.
,
Weddell
,
A. S.
,
Esmaeili
,
K.
,
Bashir
,
I.
,
Harvey
,
T. J.
,
White
,
N. M.
,
Mirring
,
P.
, and
Wang
,
L.
,
2020
, “
High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine
,”
IEEE Trans. Instrum. Meas.
,
69
(
9
), pp.
6165
6174
.
17.
Lossec
,
M.
,
Multon
,
B.
, and
Ben Ahmed
,
H.
,
2013
, “
Sizing Optimization of a Thermoelectric Generator Set With Heatsink for Harvesting Human Body Heat
,”
Energy Convers. Manage.
,
68
, pp.
260
265
.
18.
Wang
,
Y.
,
Zhu
,
W.
,
Deng
,
Y.
,
Fu
,
B.
,
Zhu
,
P.
,
Yu
,
Y.
,
Li
,
J.
, and
Guo
,
J.
,
2020
, “
Self-Powered Wearable Pressure Sensing System for Continuous Healthcare Monitoring Enabled by Flexible Thin-Film Thermoelectric Generator
,”
Nano Energy
,
73
, p.
104773
19.
El-Adl
,
A. S.
,
Mousa
,
M. G.
, and
Hegazi
,
A. A.
,
2018
, “
Performance Analysis of a Passively Cooled Thermoelectric Generator
,”
Energy Convers. Manage.
,
173
, pp.
399
411
.
20.
Byon
,
Y. S.
, and
Jeong
,
J. W.
,
2020
, “
Annual Energy Harvesting Performance of a Phase Change Material-Integrated Thermoelectric Power Generation Block in Building Walls
,”
Energy Build.
,
228
, p.
110470
.
21.
Selvam
,
C.
,
Manikandan
,
S.
,
Krishna
,
N. V.
,
Lamba
,
R.
,
Kaushik
,
S. C.
, and
Mahian
,
O.
,
2020
, “
Enhanced Thermal Performance of a Thermoelectric Generator With Phase Change Materials
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104561
.
22.
Liu
,
J.
,
Zhang
,
Y.
,
Zhang
,
D.
,
Jiao
,
S.
,
Zhang
,
Z.
, and
Zhou
,
Z.
,
2020
, “
Model Development and Performance Evaluation of Thermoelectric Generator With Radiative Cooling Heat Sink
,”
Energy Convers. Manage.
,
216
, p.
112923
.
23.
Wang
,
C. C.
,
Hung
,
C. I.
, and
Chen
,
W. H.
,
2012
, “
Design of Heat Sink for Improving the Performance of Thermoelectric Generator Using Two-Stage Optimization
,”
Energy
,
39
(
1
), pp.
236
245
.
24.
Nayak
,
R. K.
,
Ray
,
S.
,
Sahoo
,
S. S.
, and
Satapathy
,
P. K.
,
2019
, “
Effect of Angle of Attack and Wind Direction on Limiting Input Heat Flux for Solar Assisted Thermoelectric Power Generator With Plate Fin Heat Sink
,”
Sol. Energy
,
186
, pp.
175
190
.
25.
Cho
,
Y. H.
,
Park
,
J.
,
Chang
,
N.
, and
Kim
,
J.
,
2020
, “
Comparison of Cooling Methods for a Thermoelectric Generator With Forced Convection
,”
Energies
,
13
(
12
), p.
3185
.
26.
Rezania
,
A.
, and
Rosendahl
,
L. A.
,
2015
, “
A Comparison of Micro-Structured Flat-Plate and Cross-Cut Heat Sinks for Thermoelectric Generation Application
,”
Energy Convers. Manage.
,
101
, pp.
730
737
.
27.
Ibrahim
,
T. K.
,
Mohammed
,
M. N.
,
Mohammed
,
M. K.
,
Najafi
,
G.
,
Azwadi Che Sidik
,
N.
,
Basrawi
,
F.
,
Abdalla
,
A. N.
, and
Hoseini
,
S. S.
,
2018
, “
Experimental Study on the Effect of Perforations Shapes on Vertical Heated Fins Performance Under Forced Convection Heat Transfer
,”
Int. J. Heat Mass Transfer
,
118
, pp.
832
846
.
28.
Lotfi
,
B.
, and
Sundén
,
B.
,
2020
, “
Development of New Finned Tube Heat Exchanger: Innovative Tube-Bank Design and Thermohydraulic Performance
,”
Heat Transfer Eng.
,
41
(
14
), pp.
1209
1231
.
29.
Rezania
,
A.
, and
Rosendahl
,
L. A.
,
2012
, “
Thermal Effect of a Thermoelectric Generator on Parallel Microchannel Heat Sink
,”
Energy
,
37
(
1
), pp.
220
227
.
30.
Rezania
,
A.
, and
Rosendahl
,
L. A.
,
2012
, “
New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power
,”
J. Electron. Mater.
,
41
(
6
), pp.
1298
1304
.
31.
Rezania
,
A.
,
Rosendahl
,
L. A.
, and
Andreasen
,
S. J.
,
2012
, “
Experimental Investigation of Thermoelectric Power Generation Versus Coolant Pumping Power in a Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1054
1058
.
32.
Abdo
,
A.
,
Saito
,
T.
,
Ookawara
,
S.
,
Radwan
,
A.
, and
Ahmed
,
M.
,
2021
, “
Experimental Study of the Performance of Concentrator Photovoltaic/Thermoelectric Generator System Integrated With a New 3D Printed Microchannel Heat Sink
,”
Int. J. Energy Res.
,
45
(
5
), pp.
7741
7763
.
33.
Kandlikar
,
S.G.
, and
Grande
,
W.J.
,
2010
, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.
34.
Tian
,
D.
,
Mao
,
X.
,
Lin
,
J.
, and
Deng
,
Y.
,
2016
, “
Internal Flow Field Simulation of Concentrated Wind Energy Device
,”
Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng.
,
32
(
1
), pp.
104
111
.
35.
Meng
,
F.
,
Chen
,
L.
, and
Sun
,
F.
,
2011
, “
A Numerical Model and Comparative Investigation of a Thermoelectric Generator With Multi-Irreversibilities
,”
Energy
,
36
(
5
), pp.
3513
3522
.
36.
Lee
,
H.
,
2010
,
Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells
,
John Wiley & Sons Press
,
Hoboken, NJ
.
37.
Saufi Sulaiman
,
M.
,
Singh
,
B.
, and
Mohamed
,
W. A. N. W.
,
2019
, “
Experimental and Theoretical Study of Thermoelectric Generator Waste Heat Recovery Model for an Ultra-Low Temperature PEM Fuel Cell Powered Vehicle
,”
Energy
,
179
, pp.
628
646
.
You do not currently have access to this content.