Abstract

Fluid flows characterized by density variations have been studied using the schlieren-particle image velocimetry (PIV) system. The knife-edge location plays a crucial role in determining the system’s sensitivity, which significantly affects the accuracy of the measured quantities. Further, the optimum knife-edge position and the correct combination of image recording speed and interrogation window size are desirable for achieving the most accurate and reliable results. The present paper discusses the above issues on the measured quantities, such as temperature field, local Nusselt number distribution along the conducting walls, average Nusselt number, and velocity field. The experiment is performed to investigate laminar and steady natural convective flow in a water-enclosed cubic cavity with a left hot wall and a right cold wall. The analysis is undertaken for various knife-edge positions (0–90%), different image time separation varying (20–200 ms,) and interrogation window size using two passes varying from W1 = 32 pixels, W2 = 16 pixels to W1 = 128 pixels, W2 = 64 pixels. The results are presented for two distinct Rayleigh number, 1 × 108 and 3 × 108. Three-dimensional simulations have been carried out to check the fidelity of the experiment for Ra = 1 × 108. A high dynamic range of temperature is obtained for the range of knife-edge position in 50–65% while a high-velocity range is realized for knife-edge cutoff of 65% and combination of image time separation of Δt = 100 ms and interrogation window size with two passes of W1 = 64 pixels followed by W2 = 32 pixels.

References

1.
Rahimi
,
A.
,
Saee
,
A. D.
,
Kasaeipoor
,
A.
, and
Malekshah
,
E. H.
,
2019
, “
A Comprehensive Review on Natural Convection Flow and Heat Transfer: The Most Practical Geometries for Engineering Applications
,”
Int. J. Numer. Methods Heat Fluid Flow.
,
29
(
3
), pp.
834
877
.
2.
Pandey
,
S.
,
Park
,
Y. G.
, and
Ha
,
M. Y.
,
2019
, “
An Exhaustive Review of Studies on Natural Convection in Enclosures With and Without Internal Bodies of Various Shapes
,”
Int. J. Heat Mass Transfer
,
138
, pp.
762
795
.
3.
Rostami
,
S.
,
Aghakhani
,
S.
,
Hajatzadeh Pordanjani
,
A.
,
Afrand
,
M.
,
Cheraghian
,
G.
,
Oztop
,
H. F.
, and
Shadloo
,
M. S.
,
2020
, “
A Review on the Control Parameters of Natural Convection in Different Shaped Cavities With and Without Nanofluid
,”
Processes
,
8
(
9
), p.
1011
.
4.
Al-Rashed
,
A. A. A. A.
,
Kalidasan
,
K.
,
Kolsi
,
L.
,
Aydi
,
A.
,
Malekshah
,
E. H.
,
Hussein
,
A. K.
, and
Kanna
,
P. R.
,
2018
, “
Three-Dimensional Investigation of the Effects of External Magnetic Field Inclination on Laminar Natural Convection Heat Transfer in CNT–Water Nanofluid Filled Cavity
,”
J. Mol. Liq.
,
252
, pp.
454
468
.
5.
Kolsi
,
L.
,
Hussein
,
A. K.
,
Borjini
,
M. N.
,
Mohammed
,
H. A.
, and
Aïssia
,
H. B.
,
2014
, “
Computational Analysis of Three-Dimensional Unsteady Natural Convection and Entropy Generation in a Cubical Enclosure Filled With Water-Al 2 O 3 Nanofluid
,”
Arab. J. Sci. Eng.
,
39
(
11
), pp.
7483
7493
.
6.
Alnaqi
,
A. A.
,
Hussein
,
A. K.
,
Kolsi
,
L.
,
Al-Rashed
,
A. A. A. A.
,
Li
,
D
, and
Ali
,
H. M.
,
2020
, “
Computational Study of Natural Convection and Entropy Generation in 3-D Cavity With Active Lateral Walls
,”
Therm. Sci.
,
24
(
3 Part B
), pp.
2089
2100
.
7.
Al-Rashed
,
A. A. A. A.
,
Kolsi
,
L.
,
Hussein
,
A. K.
,
Hassen
,
W.
,
Aichouni
,
M.
, and
Borjini
,
M. N.
,
2017
, “
Numerical Study of Three-Dimensional Natural Convection and Entropy Generation in a Cubical Cavity With Partially Active Vertical Walls
,”
Case Stud. Therm. Eng.
,
10
, pp.
100
110
.
8.
Hussein
,
A. K.
,
Lioua
,
K.
,
Chand
,
R.
,
Sivasankaran
,
S.
,
Nikbakhti
,
R.
,
Li
,
D.
,
Naceur
,
B. M.
, and
Habib
,
B. A.
,
2016
, “
Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity With an Isothermal Bottom Wall
,”
Alexandria Eng. J.
,
55
(
2
), pp.
741
755
.
9.
Ghachem
,
K.
,
Kolsi
,
L.
,
Mâatki
,
C.
,
Hussein
,
A. K.
, and
Borjini
,
M. N.
,
2012
, “
Numerical Simulation of Three-Dimensional Double Diffusive Free Convection Flow and Irreversibility Studies in a Solar Distiller
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
869
876
.
10.
You
,
R.
,
Chen
,
J.
,
Shi
,
Z.
,
Liu
,
W.
,
Lin
,
C.-H.
,
Wei
,
D.
, and
Chen
,
Q.
,
2016
, “
Experimental and Numerical Study of Airflow Distribution in an Aircraft Cabin Mock-Up With a Gasper On
,”
J. Build. Perform. Simul.
,
9
(
5
), pp.
555
566
.
11.
Vogel
,
J.
, and
Bauer
,
D.
,
2018
, “
Phase State and Velocity Measurements with High Temporal and Spatial Resolution During Melting of N-Octadecane in a Rectangular Enclosure With Two Heated Vertical Sides
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1264
1276
.
12.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
1998
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
, pp.
1
15
.
13.
Azar
,
K.
,
1997
,
Thermal Measurements in Electronics Cooling
,
CRC Press
,
Boca Raton, FL
.
14.
Anders
,
S.
,
Noto
,
D.
,
Tasaka
,
Y.
, and
Eckert
,
S.
,
2020
, “
Simultaneous Optical Measurement of Temperature and Velocity Fields in Solidifying Liquids
,”
Exp. Fluids
,
61
(
4
), pp.
1
19
.
15.
Abram
,
C.
,
Fond
,
B.
, and
Beyrau
,
F.
,
2018
, “
Temperature Measurement Techniques for Gas and Liquid Flows Using Thermographic Phosphor Tracer Particles
,”
Prog. Energy Combust. Sci.
,
64
, pp.
93
156
.
16.
Settles
,
G. S.
, and
Hargather
,
M. J.
,
2017
, “
A Review of Recent Developments in Schlieren and Shadowgraph Techniques
,”
Meas. Sci. Technol.
,
28
(
4
), p.
42001
.
17.
Grant
,
I.
,
1997
, “
Particle Image Velocimetry: A Review
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
211
(
1
), pp.
55
76
.
18.
Hargather
,
M. J.
, and
Settles
,
G. S.
,
2012
, “
A Comparison of Three Quantitative Schlieren Techniques
,”
Opt. Lasers Eng.
,
50
(
1
), pp.
8
17
.
19.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques- Visualizing Phenomena in Transparent Media
,
Springer-Verlag GmbH
,
Berlin, Germany
.
20.
Gena
,
A. W.
,
Voelker
,
C.
, and
Settles
,
G. S.
,
2020
, “
Qualitative and Quantitative Schlieren Optical Measurement of the Human Thermal Plume
,”
Indoor Air
,
30
(
4
), pp.
757
766
.
21.
Settles
,
G.
,
2001
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transport Media
,
Springer Science & Business Media
,
Berlin, Germany
, pp.
1
394
.
22.
Mazumdar
,
A.
,
2013
,
Columbia University Computer Science Technical Reports, CUCS-016-13, Columbia University, New York
.
23.
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2012
,
Schlieren and Shadowgraph Methods in Heat and Mass Transfer
,
Springer
,
New York
.
24.
Goldstein
,
R. J.
, and
Kuehn
,
T. H.
,
2017
,
Fluid Mechanics Measurements
, 2nd ed.,
Routledge
,
Philadelphia, PA
, pp.
451
508
.
25.
Smith
,
B. L.
, and
Neal
,
D. R.
,
2016
, “Particle Image Velocimetry,”
Handbook of Fluid Dynamics
, 2nd ed.,
CRC Press
,
New York
, pp.
1
27
.
26.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
1392
.
27.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
261
304
.
28.
Settles
,
G.
, and
Covert
,
E.
,
2002
, “
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transport Media
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
B76
B77
.
29.
Traldi
,
E.
,
Boselli
,
M.
,
Simoncelli
,
E.
,
Stancampiano
,
A.
,
Gherardi
,
M.
,
Colombo
,
V.
, and
Settles
,
G. S.
,
2018
, “
Schlieren Imaging: A Powerful Tool for Atmospheric Plasma Diagnostic
,”
EPJ Tech. Instrum.
,
5
(
1
), p.
4
.
30.
Alvarez-Herrera
,
C.
,
Moreno-Hernández
,
D.
,
Barrientos-García
,
B.
, and
Guerrero-Viramontes
,
J. A.
,
2009
, “
Temperature Measurement of Air Convection Using a Schlieren System
,”
Opt. Laser Technol.
,
41
(
3
), pp.
233
240
.
31.
Martínez-González
,
A.
,
Moreno-Hernández
,
D.
, and
Guerrero-Viramontes
,
J. A.
,
2013
, “
Measurement of Temperature and Velocity Fields in a Convective Fluid Flow in Air Using Schlieren Images
,”
Appl. Opt.
,
52
(
22
), pp.
5562
5569
.
32.
Alvarez-Herrera
,
C.
,
Moreno-Hernnández
,
D.
, and
Barrientos-García
,
B.
,
2008
, “
Temperature Measurement of an Axisymmetric Flame by Using a Schlieren System
,”
J. Opt. A: Pure Appl. Opt.
,
10
(
10
), p.
104014
.
33.
Martínez-González
,
A.
,
Moreno-Hernández
,
D.
,
Guerrero-Viramontes
,
J. A.
,
León-Rodríguez
,
M.
,
Zamarripa-Ramírez
,
J. C. I.
, and
Carrillo-Delgado
,
C.
,
2019
, “
Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method
,”
Sensors
,
19
(
1
), p.
12
.
34.
Martínez-González
,
A.
,
Moreno-Hernández
,
D.
,
León-Rodríguez
,
M.
, and
Carrillo-Delgado
,
C.
,
2016
, “
Wide-Range Average Temperature Measurements of Convective Fluid Flows by Using a Schlieren System
,”
Appl. Opt.
,
55
(
3
), pp.
556
564
.
35.
Martínez-González
,
A.
,
Moreno-Hernández
,
D.
,
Monzón-Hernández
,
D.
, and
León-Rodríguez
,
M.
,
2017
, “
Wide Range Instantaneous Temperature Measurements of Convective Fluid Flows by Using a Schlieren System Based in Color Images
,”
Opt. Lasers Eng.
,
93
, pp.
66
75
.
36.
Bharti
,
O. S.
,
Saha
,
A. K.
,
Das
,
M. K.
, and
Bansal
,
S.
,
2018
, “
Simultaneous Measurement of Velocity and Temperature Fields During Natural Convection in a Water-Filled Cubical Cavity
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
272
286
.
37.
Nogueira
,
R. M.
,
Martins
,
M. A.
, and
Ampessan
,
F.
,
2011
, “
Natural Convection in Rectangular Cavities With Different Aspect Ratios
,”
Rev. Eng. Térmica
,
10
(
1–2
), p.
44
.
38.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
39.
Chen
,
S.
,
Yang
,
B.
,
Luo
,
K. H.
,
Xiong
,
X.
, and
Zheng
,
C.
,
2016
, “
Double Diffusion Natural Convection in a Square Cavity Filled With Nanofluid
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1070
1083
.
40.
Dixit
,
H. N.
, and
Babu
,
V.
,
2006
, “
Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
727
739
.
41.
Choubey
,
S.
,
2017
, “
Numerical Study on Natural Convection of Water in Differentially Heated Cavity
,”
Master thesis
,
Department of Mechanical Engineering Indian Institute of Technology Kanpur
,
Kanpur, India
.
42.
Jahanshahi
,
M.
,
Hosseinizadeh
,
S. F.
,
Alipanah
,
M.
,
Dehghani
,
A.
, and
Vakilinejad
,
G. R.
,
2010
, “
Numerical Simulation of Free Convection Based on Experimental Measured Conductivity in a Square Cavity Using Water/SiO2 Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
687
694
.
43.
Sajjadi
,
H.
,
Beigzadeh Abbassi
,
M.
, and
Kefayati
,
G. H. R.
,
2013
, “
Lattice Boltzmann Simulation of Turbulent Natural Convection in a Square Cavity Using Cu/Water Nanofluid
,”
J. Mech. Sci. Technol.
,
27
(
8
), pp.
2341
2349
.
44.
Choi
,
S. K.
,
Kim
,
S. O.
,
Lee
,
T. H.
, and
Dohee
,
D. H.
,
2014
, “
Computation of the Natural Convection of Nanofluid in a Square Cavity With Homogeneous and Nonhomogeneous Models
,”
Numer. Heat Transfer, Part A
,
65
(
4
), pp.
287
301
.
45.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1113
1122
.
46.
Martínez-González
,
A.
,
Guerrero-Viramontes
,
J. A.
, and
Moreno-Hernández
,
D.
,
2012
, “
Temperature and Velocity Measurement Fields of Fluids Using a Schlieren System
,”
Appl. Opt.
,
51
(
16
), pp.
3519
3525
.
47.
Scharnowski
,
S.
, and
Kähler
,
C. J.
,
2013
, “
On the Effect of Curved Streamlines on the Accuracy of PIV Vector Fields
,”
Exp. Fluids
,
54
(
1
), p.
1435
.
48.
Thielicke
,
W.
, and
Stamhuis
,
E. J.
,
2014
, “
PIVlab—Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Softw.
,
2
(
1
), pp.
1
10
.
49.
Scharnowski
,
S.
,
Bross
,
M.
, and
Kähler
,
C. J.
,
2019
, “
Accurate Turbulence Level Estimations Using PIV/PTV
,”
Exp. Fluids
,
60
(
1
), p.
1
.
50.
Kegerise
,
M. A.
, and
Settles
,
G. S.
,
2000
, “
Schlieren Image-Correlation Velocimetry and Its Application to Free-Convection Flows
,”
Proceedings of the 9th International Symposium on Flow Visualization
,
Heriot-Watt University, Edinburgh, Scotland
,
Aug. 22–25
, pp.
1
13
.
You do not currently have access to this content.