Abstract

The dynamics of a metal droplet impacting on a substrate surface has been studied numerically in this report. Numerical solutions of the Navier–Stokes and energy equations show the evolution of the droplet as it spreads upon impact with the substrate while simultaneously undergoing solidification. The interplay of different forces including inertia, viscous, and surface tension, coupled with solidification of the molten material in layers lead to complex flow dynamics. The change in density and viscosity owing to a change in temperature resulting from the cooling process is found to influence the spreading of the droplet significantly. The model was exercised for three different materials, namely, aluminum, copper, and nickel to determine the final splat radius as well as the spreading time. The surface tension forces as well as solidification rates were found to be the dominant factors in determining the above parameters as well as the shape of the splat during spreading. The results were found to be in good agreement with an existing analytical model.

References

1.
Datta
,
S.
,
Pratihar
,
D. K.
, and
Bandyopadhyay
,
P. P.
,
2013
, “
Modelling of Plasma Spray Coating Process Using Statistical Regression Analysis
,”
Int. J. Adv. Manuf. Technol.
,
65
(
5
), pp.
967
980
.
2.
Kar
,
S.
,
Paul
,
S.
, and
Bandyopadhyay
,
P. P.
,
2016
, “
Processing and Characterisation of Plasma Sprayed Oxides: Microstructure, Phases and Residual Stress
,”
Surf. Coat. Technol.
,
304
, pp.
364
374
.
3.
Ghosh
,
S.
,
Das
,
S.
,
Bandyopadhyay
,
T. K.
,
Bandyopadhyay
,
P. P.
, and
Chattopadhyay
,
A. B.
,
2003
, “
Indentation Responses of Plasma Sprayed Ceramic Coatings
,”
J. Mater. Sci.
,
38
(
7
), pp.
1565
1572
.
4.
Goutier
,
S.
,
Vardelle
,
M.
, and
Fauchais
,
P.
,
2012
, “
Understanding of Spray Coating Adhesion Through the Formation of a Single Lamella
,”
J. Therm. Spray Technol.
,
21
(
3–4
), pp.
522
530
.
5.
Bennett
,
T.
, and
Poulikakos
,
D.
,
1994
, “
Heat Transfer Aspects of Splat-Quench Solidification: Modelling and Experiment
,”
J. Mater. Sci.
,
29
(
8
), pp.
2025
2039
.
6.
Kang
,
C. W.
,
Tan
,
J. K.
,
Pan
,
L.
,
Low
,
C. Y.
, and
Jaffar
,
A.
,
2011
, “
Numerical and Experimental Investigations of Splat Geometric Characteristics During Oblique Impact of Plasma Spraying
,”
Appl. Surf. Sci.
,
257
(
24
), pp.
10363
10372
.
7.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
,
41
(
19
), pp.
2929
2945
.
8.
Madejski
,
J.
,
1976
, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
19
(
9
), pp.
1009
1013
.
9.
Delplanque
,
J. P.
, and
Rangel
,
R. H.
,
1997
, “
An Improved Model for Droplet Solidification on a Flat Surface
,”
J. Mater. Sci.
,
32
(
6
), pp.
1519
1530
.
10.
Dash
,
M.
,
Kumar
,
S.
,
Bandyopadhyay
,
P. P.
, and
Bhattacharya
,
A.
,
2018
, “
A Study on Evolution of Splat Radius and Temperature in Thermal Spray Process
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Vol. 2, Advanced Manufacturing
,
Pittsburgh, PA
,
Nov. 9–15
, p.
V002T02A048
.
11.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
,
11
(
6
), pp.
1406
1417
.
12.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2229
2242
.
13.
Pasandideh-Fard
,
M.
,
Pershin
,
V.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments
,”
J. Therm. Spray Technol.
,
11
(
2
), pp.
206
217
.
14.
Mostaghimi
,
J.
,
Pasandideh-Fard
,
M.
, and
Chandra
,
S.
,
2002
, “
Dynamics of Splat Formation in Plasma Spray Coating Process
,”
Plasma Chem. Plasma Process.
,
22
(
1
), pp.
59
84
.
15.
Dhiman
,
R.
,
McDonald
,
A. G.
, and
Chandra
,
S.
,
2007
, “
Predicting Splat Morphology in a Thermal Spray Process
,”
Surf. Coat. Technol.
,
201
(
18
), pp.
7789
7801
.
16.
Kamnis
,
K.
, and
Gu
,
S.
,
2005
, “
Numerical Modelling of Droplet Impingement
,”
J. Phys. D: Appl. Phys.
,
38
(
19
), pp.
3664
3673
.
17.
Li
,
C. J.
, and
Li
,
J. L.
,
2004
, “
Transient Contact Pressure During Flattening of Thermal Spray Droplet and its Effect on Splat Formation
,”
J. Therm. Spray Technol.
,
13
(
2
), pp.
229
238
.
18.
Zheng
,
Y. Z.
,
Li
,
Q.
,
Zheng
,
Z. H.
,
Zhu
,
J. F.
, and
Cao
,
P. L.
,
2014
, “
Modelling the Impact, Flattening and Solidification of a Molten Droplet on a Solid Substrate During Plasma Spraying
,”
Appl. Surf. Sci.
,
317
, pp.
526
533
.
19.
Cahill
,
J. A.
, and
Kirshenbaum
,
A. D.
,
1962
, “
The Density of Liquid Copper From Its Melting Point (1356° K.) to 2500° K. and an Estimate of Its Critical Constants
,”
J. Phys. Chem.
,
66
(
6
), pp.
1080
1082
.
20.
Assael
,
M. J.
,
Kakosimos
,
K.
,
Michael Banish
,
R.
,
Brillo
,
J.
,
Egry
,
I.
,
Brooks
,
R.
,
Quested
,
P. N.
,
Mills
,
K. C.
,
Nagashima
,
A.
,
Sato
,
Y.
, and
Wakeham
,
W. A.
,
2006
, “
Reference Data for the Density and Viscosity of Liquid Aluminum and Liquid Iron
,”
J. Phys. Chem. Ref. Data
,
35
(
1
), pp.
285
300
.
21.
Alemany
,
M. M. G.
,
Rey
,
C.
, and
Gallego
,
L. J.
,
1998
, “
Computer Simulation Study of the Dynamic Properties of Liquid Ni Using the Embedded-Atom Model
,”
Phys. Rev. B
,
58
(
2
), pp.
685
693
.
22.
Brillo
,
J.
, and
Egry
,
I.
,
2003
, “
Density Determination of Liquid Copper, Nickel, and Their Alloys
,”
Int. J. Thermophys.
,
24
(
4
), pp.
1572
9567
.
You do not currently have access to this content.