Abstract

Two kinds of new refrigerant R1234ze(E) and R245fa were discussed as substitutes or supplements to traditional working fluids of loop heat pipes (LHPs) based on their favorable thermophysical properties and characteristics such as being safe and environmentally friendly. Thermal characteristics of a loop heat pipe with sintering copper wick at different charging ratios were experimentally investigated under variable heat loads. The results showed that the optimal charging ratio in the loop heat pipe range from 65% to 70%, and at this charging level, the R1234ze(E) system had better start-up response, while the R245fa system presented a stronger heat transfer capacity. The characteristic temperature of R1234ze(E) system was below 35 °C, and the corresponding thermal resistance was 0.08 K/W–1.62 K/W under heat loads ranging from 5 W to 40 W. The thermal resistance of the R245fa system was 0.18 K/W–0.91 K/W under heat loads of 10 W–60 W, and the operating temperature was below 60 °C. The loop heat pipes charged with the proposed new refrigerants exhibit superb performance in room temperature applications, making them beneficial for enhancing the performance of electronics and could provide a distinctive choice for the cooling of small-sized electronics especially.

References

1.
Maydanik
,
Y. F.
,
2005
, “
Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
(
5
), pp.
635
657
.
2.
Ku
,
J.
,
1999
, “
Operating Characteristics of Loop Heat Pipes
,”
Proceedings of International Conference on Evolvable Systems
,
Denver, CO
,
July 12–15
, pp.
503
519
.
3.
Baker
,
C. L.
,
Bienert
,
W. B.
, and
Ducao
,
A. S.
,
1998
, “
Loop Heat Pipe Flight Experiment
,”
J. Aerosp.
,
107
(
1
), pp.
373
378
.
4.
Nethaji
,
N.
, and
Mohideen
,
S. T.
,
2017
, “
Energy Conservation Studies on a Split Airconditioner Using Loop Heat Pipes
,”
Energy Build.
,
155
, pp.
215
224
.
5.
Li
,
H.
, and
Sun
,
Y.
,
2018
, “
Operational Performance Study on a Photovoltaic Loop Heat Pipe/Solar Assisted Heat Pump Water Heating System
,”
Energy Build.
,
158
, pp.
861
872
.
6.
Liao
,
Z.
,
Xu
,
C.
,
Ren
,
Y.
,
Gao
,
F.
,
Ju
,
X.
, and
Du
,
X.
,
2018
, “
Thermal Analysis of a Conceptual Loop Heat Pipe for Solar Central Receivers
,”
Energy
,
158
, pp.
709
718
.
7.
Diallo
,
T. M. O.
,
Yu
,
M.
,
Zhou
,
J.
,
Zhao
,
X.
,
Shittu
,
S.
,
Li
,
G.
,
Ji
,
J.
, and
Hardy
,
D.
,
2019
, “
Energy Performance Analysis of a Novel Solar PVT Loop Heat Pipe Employing a Microchannel Heat Pipe Evaporator and a PCM Triple Heat Exchanger
,”
Energy
,
167
, pp.
866
888
.
8.
Beygzadeh
,
V.
,
Khalilarya
,
S.
, and
Mirzaee
,
I.
,
2020
, “
Thermodynamic Comparison of Two Novel Combined Systems Based on Solar Loop Heat Pipe Evaporator
,”
Energy
,
206
, p.
118145
.
9.
Putra
,
N.
,
Ariantara
,
B.
, and
Pamungkas
,
R. A.
,
2016
, “
Experimental Investigation on Performance of Lithium-Ion Battery Thermal Management System Using Flat Plate Loop Heat Pipe for Electric Vehicle Application
,”
Appl. Therm. Eng.
,
99
, pp.
784
789
.
10.
Bernagozzi
,
M.
,
Charmer
,
S.
,
Georgoulas
,
A.
,
Malavasi
,
I.
,
Michè
,
N.
, and
Marengo
,
M.
,
2018
, “
Lumped Parameter Network Simulation of a Loop Heat Pipe for Energy Management Systems in Full Electric Vehicles
,”
Appl. Therm. Eng.
,
141
, pp.
617
629
.
11.
Zhou
,
G.
,
Li
,
J.
, and
Jia
,
Z.
,
2019
, “
Power-Saving Exploration for High-End Ultra-Slim Laptop Computers With Miniature Loop Heat Pipe Cooling Module
,”
Appl. Energy
,
239
, pp.
859
875
.
12.
Choi
,
J.
, and
Jeong
,
M.
,
2020
, “
Preliminary Design on High-End Workstation Cooling System Using Loop Heat Pipes
,”
Ther. Sci. Eng. Prog.
,
20
, pp.
100519
.
13.
Shioga
,
T.
,
Mizuno
,
Y.
, and
Nagano
,
H.
,
2020
, “
Operating Characteristics of a New Ultra-Thin Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
151
, p.
119436
.
14.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
,
Mochizuki
,
M.
, and
Riehl
,
R. R.
,
2007
, “
Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
42
49
.
15.
Giraudon
,
R.
,
2018
, “
Contribution to the Manufacturing and the Understanding of the Thermal Behaviour of Capillary Structures Dedicated to Loop Heat Pipes
,”
Université de Lyon
.
16.
Yan
,
K.
,
Li
,
N.
,
Wu
,
Y.
, and
Xie
,
R.
,
2022
, “
Analysis of Condensation Flow Pattern and Heat Transfer of a Cryogenic Loop Heat Pipe With Different Heating Powers
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
054501
.
17.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2007
, “
Parametric Analysis of Loop Heat Pipe Operation: A Literature Review
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
621
636
.
18.
Joung
,
W.
,
Lee
,
J.
,
Lee
,
S.
, and
Lee
,
J.
,
2016
, “
Derivation and Validation of a Figure of Merit for Loop Heat Pipes With Medium Temperature Working Fluids
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
5
), p.
052901
.
19.
Kaya
,
T.
,
Baker
,
C.
, and
Ku
,
J.
,
2000
, “
Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes
,”
J. Aerosp.
,
109
(
Section 1
), pp.
580
586
.
20.
Pauken
,
M.
, and
Rodriguez
,
J. I.
,
2000
, “
Performance Characterization and Model Verification of a Loop Heat Pipe
,”
30th International Conference on Environmental Sciences (ICES)
,
Toulouse, France
,
July 10–13
, SAE Technical Paper Series No. 2000-01-2317.
21.
Ling
,
W.
,
Zhou
,
W.
,
Yu
,
W.
,
Liu
,
R.
, and
Hui
,
K. S.
,
2017
, “
Thermal Performance of Loop Heat Pipes With Smooth and Rough Porous Copper Fiber Sintered Sheets
,”
Energy Convers. Manage.
,
153
, pp.
323
334
.
22.
Anand
,
A. R.
,
Jaiswal
,
A.
,
Ambirajan
,
A.
, and
Dutta
,
P.
,
2018
, “
Experimental Studies on a Miniature Loop Heat Pipe With Flat Evaporator With Various Working Fluids
,”
Appl. Therm. Eng.
,
144
, pp.
495
503
.
23.
Tian
,
W.
,
He
,
S.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Experimental Investigation of a Miniature Loop Heat Pipe With Eccentric Evaporator for Cooling Electronics
,”
Appl. Therm. Eng.
,
159
, p.
113982
.
24.
Wang
,
H.
,
Lin
,
G.
,
Bai
,
L.
,
Fu
,
J.
, and
Wen
,
D.
,
2019
, “
Experimental Study on an Acetone-Charged Loop Heat Pipe With a Nickel Wick
,”
Int. J. Therm. Sci.
,
146
, p.
106104
.
25.
Xiao
,
B.
,
Deng
,
W.
,
Ma
,
Z.
,
He
,
S.
,
He
,
L.
,
Li
,
X.
,
Yuan
,
F.
,
Liu
,
W.
, and
Liu
,
Z.
,
2020
, “
Experimental Investigation of Loop Heat Pipe With a Large Squared Evaporator for Multi-Heat Sources Cooling
,”
Renewable Energy
,
147
, pp.
239
248
.
26.
Boo
,
J. H.
, and
Chung
,
W. B.
,
2005
, “
Experimental Study on the Thermal Performance of a Small-Scale Loop Heat Pipe with Polypropylene Wick
,”
J. Mech. Sci. Technol.
,
19
(
4
), pp.
1052
1061
.
27.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Rajesh
,
S.
, and
Wongwises
,
S.
,
2018
, “
“Thermal Management of Electronic Devices Using Combined Effects of Nanoparticle Coating and Graphene–Water Nanofluid in a Miniature Loop Heat Pipe
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
8
(
7
), pp.
1241
1253
.
28.
Su
,
Q.
,
Chang
,
S.
,
Song
,
M.
,
Zhao
,
Y.
, and
Dang
,
C.
,
2019
, “
An Experimental Study on the Heat Transfer Performance of a Loop Heat Pipe System With Ethanol-Water Mixture as Working Fluid for Aircraft Anti-Icing
,”
Int. J. Heat Mass Transfer
,
139
, pp.
280
292
.
29.
Wang
,
H.
,
Lin
,
G.
,
Bai
,
L.
,
Tao
,
Y.
, and
Wen
,
D.
,
2020
, “
Comparative Study of Two Loop Heat Pipes Using R134a as the Working Fluid
,”
Appl. Therm. Eng.
,
164
, p.
114459
.
30.
Landelle
,
A.
,
Tauveron
,
N.
,
Haberschill
,
P.
,
Revellin
,
R.
, and
Colasson
,
S.
,
2017
, “
Organic Rankine Cycle Design and Performance Comparison Based on Experimental Database
,”
Appl. Energy
,
204
, pp.
1172
1187
.
31.
Guo
,
Q.
,
Li
,
M.
, and
Tian
,
X.
,
2020
, “
Experimental Study on Flow Boiling Heat Transfer Characteristics of R134a, R245fa and R134a/R245fa Mixture at High Saturation Temperatures
,”
Int. J. Therm. Sci.
,
150
, p.
106195
.
32.
Mota-Babiloni
,
A.
,
Navarro-Esbrí
,
J.
,
Molés
,
F.
,
Cervera
,
ÁB
,
Peris
,
B.
, and
Verdú
,
G.
,
2016
, “
A Review of Refrigerant R1234ze(E) Recent Investigations
,”
Appl. Therm. Eng.
,
95
, pp.
211
222
.
33.
Jige
,
D.
,
Miyata
,
H.
, and
Inoue
,
N.
,
2019
, “
Falling Film Evaporation of R1234ze(E) and R245fa on a Horizontal Smooth Tube
,”
Exp. Therm. Fluid. Sci.
,
105
, pp.
58
66
.
34.
Longo
,
G. A.
,
Mancin
,
S.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2019
, “
Saturated Vapour Condensation of R134a Inside a 4 mm ID Horizontal Smooth Tube: Comparison With the Low GWP Substitutes R152a, R1234yf and R1234ze(E)
,”
Int. J. Heat Mass Transfer
,
133
, pp.
461
473
.
35.
Longo
,
G. A.
,
Mancin
,
S.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2019
, “
R1234yf and R1234ze(E) as Environmentally Friendly Replacements of R134a: Assessing Flow Boiling on an Experimental Basis
,”
Int. J. Refrig.
,
108
, pp.
336
346
.
36.
Spinato
,
G.
,
Borhani
,
N.
,
d'Entremont
,
B. P.
, and
Thome
,
J. R.
,
2015
, “
Time-Strip Visualization and Thermo-Hydrodynamics in a Closed Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
78
, pp.
364
372
.
37.
d'Entremont
,
B.
, and
Ochterbeck
,
J.
,
2019
, “
Charging Considerations Effects in Ground Testing Loop Heat Pipes
,”
49th International Conference on Environmental Systems
,
Boston, MA
,
July 7–11
.
38.
Lemmon
,
E.
,
Huber
,
M. L.
, and
McLinden
,
M.
,
2013
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standard Reference Data Program,” National Institute of Standards and Technology: Gaithersburg, MD.
39.
Ku
,
J.
,
1999
, “
Operating Characteristics of Loop Heat Pipes
,”
J. Aerosp.
,
108
(
1
), pp.
503
519
.
40.
Esarte
,
J.
,
Blanco
,
J. M.
,
Bernardini
,
A.
, and
San-José
,
J. T.
,
2017
, “
Optimizing the Design of a Two-Phase Cooling System Loop Heat Pipe: Wick Manufacturing With the 3D Selective Laser Melting Printing Technique and Prototype Testing
,”
Appl. Therm. Eng.
,
111
, pp.
407
419
.
41.
Chernysheva
,
M. A.
,
Maydanik
,
Y. F.
, and
Ochterbeck
,
J. M.
,
2008
, “
Heat Transfer Investigation in Evaporator of Loop Heat Pipe During Startup
,”
AIAA J. Thermophys. Heat Transfer
,
22
(
4
), pp.
617
622
.
42.
Ku
,
J.
,
2016
, “
Loop Heat Pipe Startup Behaviors
,”
46th International Conference on Environmental Systems
,
Vienna, Austria
,
July 10–14
.
43.
Hongxing
,
Z.
,
Guiping
,
L.
,
Ting
,
D.
,
Wei
,
Y.
,
Xingguo
,
S.
,
Sudakov
,
R. G.
, and
Maidanik
,
Y. F.
,
2005
, “
Investigation on Startup Behaviors of a Loop Heat Pipe
,”
AIAA J. Thermophys. Heat Transfer
,
19
(
4
), pp.
509
518
.
44.
Hoang
,
T.
,
Baldauff
,
R.
, and
Cheung
,
K.
,
2005
, “
Start-Up Behavior of an Ammonia Loop Heat Pipe
,”
3rd International Energy Conversion Engineering Conference.
,
San Francisco, CA
,
Aug. 15–18
.
45.
Zhang
,
L.
,
Xu
,
J.
, and
Xu
,
H.
,
2013
, “
Effect of Inventory on the Heat Performance of Copper–Water Loop Heat Pipe
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
875
882
.
46.
Liu
,
Z.
,
Wang
,
D.
,
Jiang
,
C.
,
Yang
,
J.
, and
Liu
,
W.
,
2015
, “
Experimental Study on Loop Heat Pipe With Two-Wick Flat Evaporator
,”
Int. J. Therm. Sci.
,
94
, pp.
9
17
.
You do not currently have access to this content.