Abstract

Mathematical thermodynamic modeling is used in desalination systems to obtain unknown values and predict various properties such as enthalpy or phase equilibrium. These models are useful to understand system behavior. A mathematical modeling of a multi-effect distillation (MED) plant without a thermal vapor compressor (TVC) was performed to simulate and forecast the temperatures, mass flowrates, and the productivity of each cell of steam. The total productivity of the desalination unit and the performance rate in different operating conditions were also found. A python program was used to solve the model equations. The evaluation indicates that the model is reliable and its predictions matched well with the real data obtained from Zuara desalination plant. This subject was selected for research because most studies concentrate on MED with TVC or MED of low cell number and without TVC. The obtained results show that the productivity of the system and the gain output ratio are directly proportional to seawater temperature and inversely proportional to plant load. The model can be utilized to estimate the performance of desalination plants of MED without TVC. The model was validated using industrial data.

References

1.
Najjar
,
Y.
, “
Energy and Water Interdependence and Integration of Systems 2019
,”
J. Environ. Soil Sci.
, http://lupinepublishers.com/environmental-soil-science-journal/pdf/OAJESS.MS.ID.000154.pdf Accessed December 2020.
2.
Gebel
,
J.
, and
Yüce
,
S.
,
2008
,
An Engineer’s Guide to Desalination
,
VGB PowerTech
,
Essen, Germany
.
3.
Abu-Zeid
,
M.
, and
Shiklomanov
,
I. A.
, “Water Resources as a Challenge of the Twenty-First Century 2003,” World Meteorological Organization, http://library.wmo.int/doc_num.php?explnumid=9027, Accessed January 2021.
4.
Bond
,
N. R.
,
Burrows
,
R. M.
,
Kennard
,
M. J.
, and
Bunn
,
S. E.
,
2019
,
Multiple Stressors in River Ecosystems
,
S.
Sabater
,
A.
Elosegi
, and
R.
Ludwig
, eds.,
Elsevier
,
Amsterdam
, pp.
111
129
.
5.
Ruan
,
G.
,
Wang
,
M.
,
An
,
Z.
,
Xu
,
G.
,
Ge
,
Y.
, and
Zhao
,
H.
,
2021
, “
Progress and Perspectives of Desalination in China
,”
Membranes
,
11
(
3
), p.
206
.
6.
Public Health and the Environment World Health Organization
,
2007
, “Guidance for the Health and Environmental Aspects Applicable to Desalination,” http://www.who.int/water_sanitation_health/gdwqrevision/desalination.pdf, Accessed January 2021.
7.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
,
Mistry
,
K. H.
, and
Thiel
,
G. P.
,
2017
, “Thermodynamics, Exergy, and Energy Efficiency in Desalination Systems,”
Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach
,
H. A.
Arafat
, ed.,
Elsevier
,
Amsterdam
, pp.
1
86
.
8.
Thimmaraju
,
M.
,
Sreepada
,
D.
,
Babu
,
S.
,
Dasari
,
K.
,
Velpula
,
S.
, and
Vallepu
,
N.
,
2018
, “Desalination of Water,”
Desalination and Water Treatment
,
E.
Murat
, and
Y.
Ebubekir
, eds.,
IntechOpen
,
London, UK
, pp.
333
347
.
9.
Isaka
,
M.
,
2012
, “
Water Desalination Using Renewable Energy
,”
International Renewable Energy Agency (IRENA)
, http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/IRENA-ETSAP-Tech-Brief-I12-Water-Desalination.pdf, Accessed December 20210.
10.
Al-Karaghouli
,
A.
, and
Kazmerski
,
L.
,
2013
, “
Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
343
356
.
11.
Casimiro
,
S.
,
2015
, “
Concentrating Solar Power + Desalination Plants (CSP + D): Models and Performance Analysis
,”
Ph.D. thesis
,
University of Lisbon
,
Lisbon, Portugal
.
12.
Clayton
,
R.
,
2015
, “
Desalination for Water Supply
,”
Foundation for Water Research
, http://www.fwr.org/desal.pdf, Accessed January 2021.
13.
Brogioli
,
D.
,
La Mantia
,
F.
, and
Yip
,
N. Y.
,
2018
, “
Thermodynamic Analysis and Energy Efficiency of Thermal Desalination Processes
,”
Desalination
,
428
, pp.
29
39
.
14.
Askari
,
I.
, and
Amerim
,
M.
,
2021
, “
A Techno-Economic Review of Multi Effect Desalination Systems Integrated With Different Solar Thermal Sources
,”
Appl. Therm. Eng.
,
185
(
9
), pp.
1
48
.
15.
Brika
,
B.
,
2018
, “
Water Resources and Desalination in Libya: A Review
,”
Proceedings
,
2
(
11
), p.
586
.
16.
Ghaffour
,
N.
,
Bundschuh
,
J.
,
Mahmoudi
,
H.
, and
Goosen
,
M.
,
2015
, “
Renewable Energy-Driven Desalination Technologies: A Comprehensive Review on Challenges and Potential Applications of Integrated Systems
,”
Desalination
,
356
, pp.
94
114
.
17.
Al-Mutaz
,
I. S.
,
2014
, “
Features of Multi-Effect Evaporation Desalination Plants
,”
Desalin. Water Treat.
,
54
(
12
), pp.
3227
3235
.
18.
Salimi
,
M.
, and
Amidpour
,
M.
,
2017
, “
Modeling, Simulation, Parametric Study and Economic Assessment of Reciprocating Internal Combustion Engine Integrated with Multi-Effect Desalination Unit
,”
Energy Convers. Manage.
,
48
(
1
), p.
138
,
pp. 299–311
.
19.
Cherif
,
H.
,
Champenois
,
G.
, and
Belhadj
,
J.
,
2016
, “
Environmental Life Cycle Analysis of a Water Pumping and Desalination Process Powered by Intermittent Renewable Energy Sources
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
1504
1513
.
20.
Hatzikioseyian
,
A.
,
Vidali
,
R.
, and
Kousi
,
P.
, “Modelling and Thermodynamic Analysis of a Multi Effect Distillation (MED) Plant for Seawater Desalination 2003,” Site Seer X, http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=FECABBC2FCA9CED5DC2428E4E1F353C1?doi=10.1.1.625.318, Accessed January 2021.
21.
Ameri
,
M.
,
Mohammadi
,
S. S.
,
Hosseini
,
M.
, and
Seifi
,
M.
,
2009
, “
Effect of Design Parameters on Multi-Effect Desalination System Specifications
,”
Desalination
,
245
(
1–3
), pp.
266
283
.
22.
Abdul-Wahab
,
S. A.
,
Reddy
,
K. V.
,
Al-Hatmi
,
S. M.
, and
Tajeldin
,
Y.
,
2011
, “
Development of a Steady-State Mathematical Model for Multistage Flash (MSF) Desalination Plant
,”
Int. J. Energy Res.
,
36
(
6
), pp.
710
723
.
23.
Shen
,
S.
,
Zhou
,
S.
,
Yang
,
Y.
,
Yang
,
L.
, and
Liu
,
X.
,
2011
, “
Study of Steam Parameters on the Performance of a TVC-MED Desalination Plant
,”
Desalin. Water Treat.
,
33
(
1–3
), pp.
300
308
.
24.
Al-Mutaz
,
I. S.
, and
Wazeer
,
I.
,
2014
, “
Development of a Steady-State Mathematical Model for MEE-TVC Desalination Plants
,”
Desalination
,
351
, pp.
9
18
.
25.
Zhoua
,
S.
,
Gongb
,
L.
,
Liua
,
X.
, and
Shenb
,
S.
,
2019
, “
Mathematical Modeling and Performance Analysis for Multi-Effect Evaporation/Multi-Effect Evaporation with Thermal Vapor Compression Desalination System
,”
Appl. Therm. Eng.
,
159
, pp.
1
14
.
26.
Qi
,
C. H.
,
Feng
,
H. J.
,
Lv
,
Q.-C.
,
Xing
,
Y.-L.
, and
Li
,
N.
,
2014
, “
Performance Study of a Pilot-Scale Low-Temperature Multi-Effect Desalination Plant
,”
Appl. Energy
,
135
, pp.
415
422
.
27.
Gao
,
H.
,
Jiang
,
A.
,
Huang
,
Q.
,
Xia
,
Y.
,
Gao
,
F.
, and
Wang
,
J.
,
2020
, “
Mode-Based Analysis and Optimal Operation of MSF Desalination System
,”
Processes
,
8
(
7
), p.
794
.
28.
Zhou
,
S.
,
Shen
,
S.
,
Guo
,
Y.
, and
Mu
,
X.
,
2017
, “
Comparative Performance Evaluation of LT-MEE Desalination Systems with Three Feed Configurations
,”
Desalin. Water Treat.
,
69
, pp.
217
228
.
29.
Guo
,
P.
,
Li
,
T.
,
Li
,
P.
,
Zhai
,
Y.
, and
Li
,
J.
,
2020
, “
Study on a Novel Spray-Evaporation Multi-Effect Distillation Desalination System
,”
Desalination
,
473
, p.
114195
.
30.
Al-Hotmani
,
O. M. A.
,
Al-Obaidi
,
M. A. A.
,
John
,
Y. M.
,
Patel
,
R.
, and
Mujtaba
,
I. M.
,
2020
, “
Scope and Limitations of the Mathematical Models Developed for the Forward Feed Multi-Effect Distillation Process—A Review
,”
Processes
,
8
(
9
), p.
1174
.
31.
Liu
,
C.
,
Bi
,
M.
,
Zhou
,
Y.
, and
Cui
,
G.
,
2020
, “
A Novel Model for Evaporator Structural Design in the Multi-Effect Evaporation Plant
,”
Appl. Therm. Eng.
,
176
, p.
115351
.
32.
Muftah
,
A.
,
2016
, “
Study of the Possibility to Produce Electricity From Destroyed Energy in Zuara Desalination Plant
,”
Proceedings of 1st International Conference of Chemical and Petroleum Engineering
,
Alkhoms, Libya
,
Dec. 20–22
, pp.
805
812
.
33.
El-Helw
,
M.
,
El-Maghlany
,
M. M.
, and
El-Ashmawy
,
W. M.
,
2020
, “
Novel Sea Water Desalination Unit Utilizing Solar Energy Heating System
,”
Alexandria Eng. J.
,
59
(
2
), pp.
915
924
.
34.
Muftah
,
A.
,
Abugderah
,
M.
, and
Dakhel
,
H.
,
2018
, “
Boilers Performance Evaluation of Zuara Desalination Plant
,”
AIJR Proc.
,
2
, pp.
290
297
.
35.
Muftah
,
A.
, and
Fellah
,
G.
,
2009,
, “
Exergy Analysis for Unit Two of Zuara Desalination Plant
,”
Proceedings of 1st International Chemical and Process Engineering Conference
,
Tripoli, Libya
,
May 5–7
, Paper No. CHE-EA-01.
You do not currently have access to this content.