Abstract

The crucial distinction of heat transfer between the earth environment and the high acceleration overloads of flight vehicle is the secondary flow resulting from the gravitational buoyancy force and centrifugal one, which influences the heat transfer of supercritical fluid significantly. Hence, in this work, the effect of various flight acceleration overloads on turbulent convection heat transfer in the cooling channel of flight vehicle electromechanical actuator (EMA) is investigated numerically. The cooling channel is constructed from a helically coiled tube with an inner diameter of 8 mm, coil diameter of 74 mm, and screw pitch of 10 mm, the operation pressure covers the range of 5–9 MPa, and the gravity ranges from 1 g to 50 g. Based on this model, the heat transfer characteristics of supercritical methane in the cooling channel of flight vehicle EMA under various acceleration overloads are studied, aiming to obtain a deep understanding of flow and heat transfer mechanism and thermal performance of supercritical methane in the cooling channel under the conditions of actual flight. The simulation result indicates that with the high-g overload, the heat transfer enhancement becomes obvious and the effect of secondary flow caused by the flight acceleration exhibits the non-negligible influence. The secondary flow caused by flight acceleration overloads disturbs the flow acceleration of the main stream that weakens the suppression of heat transfer. However, the effect of gravitational buoyancy does not dominate on forced convection heat transfer even under the high acceleration overload.

References

1.
Neill
,
T.
,
Judd
,
D.
,
Veith
,
E.
, and
Rousar
,
D.
,
2009
, “
Practical Uses of Liquid Methane in Rocket Engine Applications
,”
Acta Astronaut.
,
65
(
5–6
), pp.
696
705
.
2.
Song
,
J. W.
, and
Sun
,
B.
,
2017
, “
Thermal-Structural Analysis of Regeneratively Cooled Thrust Chamber Wall in Reusable LOX/Methane Rocket Engines
,”
Chin. J. Aeronaut.
,
30
(
3
), pp.
1043
1053
.
3.
Baiocco
,
P.
, and
Bonnal
,
C.
,
2016
, “
Technology Demonstration for Reusable Launchers
,”
Acta Astronaut.
,
120
(
3–4
), pp.
43
58
.
4.
Denies
,
L.
,
2016
, “
Regenerative Cooling Analysis of Oxygen/Methane Rocket Engines
,”
Ph.D. dissertation
,
Delft University of Technology
,
Delft
.
5.
Gao
,
Z. G.
,
Zhang
,
J. L.
,
Zhou
,
J.
, and
Li
,
P.
,
2015
, “
Design and Modeling of a Single Nozzle-Double Pendulum Electrical Servo System
,”
J. Solid Rocket Technol.
,
38
(
6
), pp.
888
892
.
6.
Gao
,
Z. G.
,
Bai
,
J. H.
,
Zhou
,
J.
,
Wang
,
C. R.
, and
Li
,
P.
,
2020
, “
Numerical Investigation of Supercritical Methane in Helically Coiled Tube on Regenerative Cooling of Liquid Rocket Electromechanical Actuator
,”
Cryogenics
,
106
(
3
), p.
103023
.
7.
Xu
,
R. N.
,
Luo
,
F.
, and
Jiang
,
P. X.
,
2015
, “
Experimental Research on the Turbulent Convection Heat Transfer of Supercritical Pressure CO2 in a Serpentine Vertical Mini Tube
,”
Int. J. Heat Mass Transfer
,
91
(
12
), pp.
552
561
.
8.
Zhang
,
S. J.
,
Xu
,
X. X.
,
Liu
,
C.
,
Liu
,
X. X.
,
Zhang
,
Y. D.
, and
Dang
,
C. B.
,
2019
, “
The Heat Transfer of Supercritical CO2 in Helically Coiled Tube: Trade-Off Between Curvature and Buoyancy Effect
,”
Energy
,
176
(
6
), pp.
765
777
.
9.
Ciofalo
,
M.
,
Arini
,
A.
, and
Liberto
,
M. D.
,
2015
, “
On the Influence of Gravitational and Centrifugal Buoyancy on Laminar Flow and Heat Transfer in Curved Pipes and Coils
,”
Int. J. Heat Mass Transfer
,
82
(
3
), pp.
123
134
.
10.
Liu
,
G. X.
,
Huang
,
Y. P.
,
Wang
,
J. F.
, and
Lv
,
F.
,
2015
, “
Effect of Buoyancy and Flow Acceleration on Heat Transfer of Supercritical CO2 in Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
91
(
12
), pp.
640
646
.
11.
Liu
,
X. X.
,
Xu
,
X. X.
,
Liu
,
C.
,
Ye
,
J.
,
Li
,
H. R.
,
Bai
,
W. J.
, and
Dang
,
C. B.
,
2017
, “
Numerical Study of the Effect of Buoyancy Force and Centrifugal Force on Heat Transfer Characteristics of Supercritical CO2 in Helically Coiled Tube at Various Inclination Angles
,”
Appl. Therm. Eng.
,
116
(
4
), pp.
500
515
.
12.
Zhang
,
W.
,
Wang
,
S. X.
,
Li
,
C. D.
, and
Xu
,
J. L.
,
2015
, “
Mixed Convective Heat Transfer of CO2 at Supercritical Pressures Flowing Upward Through a Vertical Helically Coiled Tube
,”
Appl. Therm. Eng.
,
88
(
9
), pp.
61
70
.
13.
Bai
,
W. J.
,
Zhang
,
S. J.
,
Li
,
H. R.
, and
Xu
,
X. X.
,
2019
, “
Effects of Abnormal Gravity on Heat Transfer of Supercritical CO2 in Heated Helically Coiled Tube
,”
Appl. Therm. Eng.
,
159
(
8
), p.
113833
.
14.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence: I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
15.
Ackermam
,
J. W.
,
1970
, “
Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
490
497
.
16.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.
17.
Xu
,
J. L.
,
Yang
,
C.
,
Zhang
,
W.
, and
Sun
,
D. L.
,
2015
, “
Turbulent Convective Heat Transfer of CO2 in a Helical Tube at Near-Critical Pressure
,”
Int. J. Heat Mass Transfer
,
80
(
1
), pp.
748
758
.
18.
Li
,
F. B.
, and
Bai
,
B. F.
,
2018
, “
Flow and Heat Transfer of Supercritical Water in the Vertical Helically-Coiled Tube Under Half-Side Heating Condition
,”
Appl. Therm. Eng.
,
133
(
3
), pp.
512
519
.
19.
Wang
,
K. Z.
,
Xu
,
X. X.
,
Wu
,
Y. Y.
,
Liu
,
C.
, and
Dang
,
C. B.
,
2015
, “
Numerical Investigation on Heat Transfer of Supercritical CO2 in Heated Helically Coiled Tubes
,”
J. Supercrit. Fluids
,
99
(
4
), pp.
112
120
.
20.
Zhao
,
H. J.
,
Li
,
X. W.
, and
Wu
,
X. X.
,
2017
, “
Numerical Investigation of Supercritical Water Turbulent Flow and Heat Transfer Characteristics in Vertical Helical Tubes
,”
J. Supercrit. Fluids
,
127
(
9
), pp.
48
61
.
21.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2010
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties REFPROP. 9.0
,
National Institute of Standard and Technology
,
Gaithersburg, MD
.
22.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions,”
Turbulent Forced Convection in Channels and Bundles
, Vol.
2
,
S.
Kakac
, and
D. B.
Spalding
, eds.,
Hemisphere Publishing Corp.
,
New York
, pp.
613
640
.
23.
Haemisch
,
J.
,
Suslov
,
D.
, and
Oschwald
,
M.
,
2019
, “
Experimental Study of Methane Heat Transfer Deterioration in a Subscale Combustion Chamber
,”
J. Propul. Power
,
35
(
4
), pp.
819
826
.
24.
Urbano
,
A.
, and
Nasuti
,
F.
,
2013
, “
Onset of Heat Transfer Deterioration in Supercritical Methane Flow Channels
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
298
308
.
25.
Woschnak
,
A.
,
2009
, “
Untersuchung des Wärmeübergangs in Regenerative Gekühlten Schubkammern Kryogener Raketentriebwerke
,”
Ph.D. dissertation
,
RWTH Aachen University
,
Aachen
.
You do not currently have access to this content.