Abstract

Recent progress in nanotechnology has led to a revolution in the automotive cooling system. In the present work, enhancement of car radiator thermal performance was investigated using different nanofluids namely SiO2/water and ZnO/water nanofluids as cooling mediums. The present study mainly aims to investigate the impact of 5 wt% from SiO2 and ZnO nanoparticles (NPs) dispersed in water based on car radiator heat transfer with spherical and hexagonal morphology, respectively. The experiments were performed in two working conditions of the nanofluids, i.e., coolant temperature and volume flowrate; moreover, the present results were compared with the previous studies. The experimental working conditions were set at coolant inlet temperature (tc,i) ranged from 45 to 80 °C and the coolant volume flowrate (V˙) varied from 3.5 to 6.5 liter/min. The experimental results show that the hexagonal ZnO/water nanofluid was superior toward enhancement of car radiator thermal performance comparing to that of SiO2 NPs. In addition, at 6.5 liter/min and 45 °C, the improvements of car radiator effectiveness due to using SiO2 and ZnO based water nanofluids and compared with that for the based water are 13.9% and 16%, respectively. The present study used the multiple regression analysis (MRA), and hence empirical correlations are suggested to estimate the overall heat transfer coefficient (U) for all coolants as functions of volume flowrate (V˙) and the coolant inlet temperature (tc,i) with a maximum STDEV of ±1.85%.

References

1.
Che Sidik
,
N. A.
,
Witri Mohd Yazid
,
M. N. A.
, and
Mamat
,
R.
,
2017
, “
Recent Advancement of Nanofluids in Engine Cooling System
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
137
144
.
2.
Sidik
,
N. A. C.
,
Yazid
,
M. N. A. W. M.
, and
Mamat
,
R.
,
2015
, “
A Review on the Application of Nanofluids in Vehicle Engine Cooling System
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
85
90
.
3.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,”
ASME International Mechanical Engineering Congress & Exposition
,
San Francisco, CA
, pp.
1
8
.
4.
Said
,
Z.
,
El Haj Assad
,
M.
,
Hachicha
,
A. A.
,
Bellos
,
E.
,
Abdelkareem
,
M. A.
,
Alazaizeh
,
D. Z.
, and
Yousef
,
B. A. A.
,
2019
, “
Enhancing the Performance of Automotive Radiators Using Nanofluids
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
183
194
.
5.
Hussein
,
A. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Sharma
,
K. V.
,
2014
, “
Heat Transfer Augmentation of a Car Radiator Using Nanofluids
,”
Heat Mass Transfer
,
50
(
11
), pp.
1553
1561
.
6.
Hussein
,
A. M.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2014
, “
Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System
,”
Case Stud. Therm. Eng.
,
2
, pp.
50
61
.
7.
Hussein
,
A. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Sharma
,
K. V.
,
2014
, “
Heat Transfer Enhancement Using Nanofluids in an Automotive Cooling System
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
195
202
.
8.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. M.
, and
Seifi Jamnani
,
M.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.
9.
Esfe
,
M. H.
,
Esfandeh
,
S.
,
Afrand
,
M.
,
Rejvani
,
M.
, and
Rostamian
,
S. H.
,
2018
, “
Experimental Evaluation, New Correlation Proposing and ANN Modeling of Thermal Properties of EG Based Hybrid Nanofluid Containing ZnO-DWCNT Nanoparticles for Internal Combustion Engines Applications
,”
Appl. Therm. Eng.
,
133
, pp.
452
463
.
10.
Ray
,
D. R.
, and
Das
,
D. K.
,
2014
, “
Superior Performance of Nanofluids in an Automotive Radiator
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041002
.
11.
Ali
,
H. M.
,
Ali
,
H.
,
Liaquat
,
H.
,
Bin Maqsood
,
H. T.
, and
Nadir
,
M. A.
,
2015
, “
Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Using ZnO-Water Nanofluids
,”
Energy
,
84
, pp.
317
324
.
12.
Gupta
,
M.
,
Singh
,
V.
,
Kumar
,
R.
, and
Said
,
Z.
,
2017
, “
A Review on Thermophysical Properties of Nanofluids and Heat Transfer Applications
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
638
670
.
13.
Ramalingam
,
S.
,
Dhairiyasamy
,
R.
, and
Govindasamy
,
M.
,
2020
, “
Assessment of Heat Transfer Characteristics and System Physiognomies Using Hybrid Nanofluids in an Automotive Radiator
,”
Chem. Eng. Process. Process Intensif.
,
150
, p.
107886
.
14.
Maghrabie
,
H. M.
,
Attalla
,
M.
, and
Mohsen
,
A. A. A.
,
2021
, “
Performance Assessment of a Shell and Helically Coiled Tube Heat Exchanger With Variable Orientations Utilizing Different Nanofluids
,”
Appl. Therm. Eng.
,
182
, p.
116013
.
15.
Bhanvase
,
B. A.
,
Kamath
,
S. D.
,
Patil
,
U. P.
,
Patil
,
H. A.
,
Pandit
,
A. B.
, and
Sonawane
,
S. H.
,
2016
, “
Intensification of Heat Transfer Using PANI Nanoparticles and PANI-CuO Nanocomposite Based Nanofluids
,”
Chem. Eng. Process. Process Intensif.
,
104
, pp.
172
180
.
16.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
, and
Liu
,
Y.
,
2002
, “
Thermal Conductivity of Suspensions Containing Nanosized SiC Particles
,”
Int. J. Thermophys.
,
23
(
2
), pp.
571
580
.
17.
Xing
,
M.
,
Yu
,
J.
, and
Wang
,
R.
,
2015
, “
Experimental Study on the Thermal Conductivity Enhancement of Water Based Nanofluids Using Different Types of Carbon Nanotubes
,”
Int. J. Heat Mass Transfer
,
88
, pp.
609
616
.
18.
Elsaid
,
K.
,
Abdelkareem
,
M. A.
,
Maghrabie
,
H. M.
,
Sayed
,
E. T.
,
Wilberforce
,
T.
,
Baroutaji
,
A.
, and
Olabi
,
A. G.
,
2021
, “
Thermophysical Properties of Graphene-based Nanofluids
,”
Int. J. Thermofluids
,
10
, p.
100073
.
19.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2007
, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
593
599
.
20.
Kim
,
S. H.
,
Choi
,
S. R.
, and
Kim
,
D.
,
2007
, “
Thermal Conductivity of Metal-Oxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation
,”
ASME J. Heat Transfer
,
129
(
3
), pp.
298
307
.
21.
Yan
,
S.
,
Wang
,
F.
,
Shi
,
Z. G.
, and
Tian
,
R.
,
2017
, “
Heat Transfer Property of SiO2/Water Nanofluid Flow Inside Solar Collector Vacuum Tubes
,”
Appl. Therm. Eng.
,
118
, pp.
385
391
.
22.
Zhang
,
L.
,
Jiang
,
Y.
,
Ding
,
Y.
,
Povey
,
M.
, and
York
,
D.
,
2007
, “
Investigation Into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids)
,”
J. Nanoparticle Res.
,
9
(
3
), pp.
479
489
.
23.
Ma
,
J.
,
Shahsavar
,
A.
,
Al-Rashed
,
A. A. A. A.
,
Karimipour
,
A.
,
Yarmand
,
H.
, and
Rostami
,
S.
,
2020
, “
Viscosity, Cloud Point, Freezing Point and Flash Point of Zinc Oxide/SAE50 Nanolubricant
,”
J. Mol. Liq.
,
298
, p.
112045
.
24.
Tanvir
,
S.
, and
Qiao
,
L.
,
2012
, “
Surface Tension of Nanofluid-Type Fuels Containing Suspended Nanomaterials
,”
Nanoscale Res. Lett.
,
7
(
1
), p.
226
.
25.
Qiu
,
L.
,
Zhu
,
N.
,
Feng
,
Y.
,
Michaelides
,
E. E.
,
Żyła
,
G.
,
Jing
,
D.
,
Zhang
,
X.
,
Norris
,
P. M.
,
Markides
,
C. N.
, and
Mahian
,
O.
,
2020
, “
A Review of Recent Advances in Thermophysical Properties at the Nanoscale: From Solid State to Colloids
,”
Phys. Rep.
,
843
, pp.
1
81
.
26.
Ambreen
,
T.
, and
Kim
,
M. H.
,
2018
, “
Heat Transfer and Pressure Drop Correlations of Nanofluids: A State of Art Review
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
564
583
.
27.
Ghadimi
,
A.
,
Saidur
,
R.
, and
Metselaar
,
H. S. C.
,
2011
, “
A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4051
4068
.
28.
Ahmed
,
S. A.
,
Ozkaymak
,
M.
,
Sözen
,
A.
,
Menlik
,
T.
, and
Fahed
,
A.
,
2018
, “
Improving Car Radiator Performance by Using TiO2-Water Nanofluid
,”
Eng. Sci. Technol. Int. J.
,
21
(
5
), pp.
996
1005
.
29.
Attalla
,
M.
, and
Maghrabie
,
H. M.
,
2019
, “
An Experimental Study on Heat Transfer and Fluid Flow of Rough Plate Heat Exchanger Using Al2O3/Water Nanofluid
,”
Exp. Heat Transf.
,
33
(
3
), pp.
261
281
.
30.
Zeinali Heris
,
S.
,
Nasr Esfahany
,
M.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.
31.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2017
,
Principles of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons
,
Singapore
.
32.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis the Study of Uncertainties in Physical Measurements
, 2nd ed.,
University Science Books
,
Sausalito, CA
.
33.
Farbod
,
M.
,
Kouhpeymani Asl
,
R.
, and
Noghreh Abadi
,
A. R.
,
2015
, “
Morphology Dependence of Thermal and Rheological Properties of Oil-based Nanofluids of CuO Nanostructures
,”
Colloids Surf., A
,
474
, pp.
71
75
.
34.
Maghrabie
,
H. M.
,
Elsaid
,
K.
,
Sayed
,
E. T.
,
Abdelkareem
,
M. A.
,
Wilberforce
,
T.
,
Ramadan
,
M.
, and
Olabi
,
A. G.
,
2021
, “
Intensification of Heat Exchanger Performance Utilizing Nanofluids
,”
Int. J. Thermofluids
,
10
, p.
100071
.
35.
Nieh
,
H. M.
,
Teng
,
T. P.
, and
Yu
,
C. C.
,
2014
, “
Enhanced Heat Dissipation of a Radiator Using Oxide Nano-Coolant
,”
Int. J. Therm. Sci.
,
77
, pp.
252
261
.
36.
Naraki
,
M.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Vermahmoudi
,
Y.
,
2013
, “
Parametric Study of Overall Heat Transfer Coefficient of CuO/Water Nanofluids in a Car Radiator
,”
Int. J. Therm. Sci.
,
66
, pp.
82
90
.
37.
Hartman Kok
,
P. J. A.
,
Kazarian
,
S. G.
,
Lawrence
,
C. J.
, and
Briscoe
,
B.J.
,
2002
, “
Near-Wall Particle Depletion in a Flowing Colloidal Suspension
,”
J. Rheol.
,
46
(
2
), pp.
481
493
.
38.
Ding
,
Y.
, and
Wen
,
D.
,
2005
, “
Particle Migration in a Flow of Nanoparticle Suspensions
,”
Powder Technol.
,
149
(
2–3
), pp.
84
92
.
39.
Li
,
Y.
,
Fernández-Seara
,
J.
,
Du
,
K.
,
Pardiñas
,
ÁÁ
,
Latas
,
L. L.
, and
Jiang
,
W.
,
2016
, “
Experimental Investigation on Heat Transfer and Pressure Drop of ZnO/Ethylene Glycol-Water Nanofluids in Transition Flow
,”
Appl. Therm. Eng.
,
93
, pp.
537
548
.
40.
M’hamed
,
B.
,
Che Sidik
,
N. A.
,
Akhbar
,
M. F. A.
,
Mamat
,
R.
, and
Najafi
,
G.
,
2016
, “
Experimental Study on Thermal Performance of MWCNT Nanocoolant in Perodua Kelisa 1000cc Radiator System
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
156
161
.
41.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Jamnani
,
M. S.
, and
Hoseini
,
S. M.
,
2011
, “
Improving the Cooling Performance of Automobile Radiator With Al 2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1833
1838
.
42.
Radkar
,
R. N.
,
Bhanvase
,
B. A.
,
Barai
,
D. P.
, and
Sonawane
,
S. H.
,
2019
, “
Intensified Convective Heat Transfer Using ZnO Nanofluids in Heat Exchanger With Helical Coiled Geometry at Constant Wall Temperature
,”
Mater. Sci. Energy Technol.
,
2
(
2
), pp.
161
170
.
43.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C.
,
2013
, “
Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
7
14
.
44.
Liu
,
M. S.
,
Lin
,
M. C. C.
,
Huang
,
I. T.
, and
Wang
,
C. C.
,
2006
, “
Enhancement of Thermal Conductivity With CuO for Nanofluids
,”
Chem. Eng. Technol.
,
29
(
1
), pp.
72
77
.
You do not currently have access to this content.