Abstract

Due to the rapid urbanization of many cities around the world, industrial manufacturing plants have grown rapidly, thus leading to the release of large amounts of pollutants into the environment. This is the main reason for the degradation of the local air quality, resulting in an increased risk of unfavorable sanitary conditions for city dwellers. Understanding the dispersion of pollutants in local population environments, meteorological conditions and other physical characteristics is fundamental for predicting and evaluating air quality. This paper provides comprehensive details on the study of flow patterns and pollutant dispersion processes in urban areas. Several factors which include building geometry, local atmospheric effects, structural obstructions, and velocity of exhaust pollutants are examined considering field data, wind tunnel tests, operational simulation techniques, and computational fluid dynamics. Good agreements are noticeable. Simultaneous evolutions of the velocity, thermal and scalar mass fraction fields of the pollutant emitting from a three-dimensional elevated source around a rectangular obstacle placed on a turbulent boundary layer wall, and also downstream the obstacle, have been successfully carried out. The most serious pollutant levels in urban areas under various high wind velocities are identified.

References

1.
Castro
,
I,P
, and
Robins
,
A. G.
,
1977
, “
The Flow Around a Surface-Mounted Cube in Uniform and Turbulent Streams
,”
J. Fluid Mech.
,
79
(
2
), pp.
307
335
.
2.
Martinuzzi
,
R.
, and
Tropea
,
C.
,
1993
, “
The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
J. Fluids Eng.
,
115
(
1
), pp.
85
92
.
3.
Hussein
,
H. J.
, and
Martinuzzi
,
R. J.
,
1995
, “
Energy Balance for Turbulent Flow Around a Surface Mounted Cube Placed in a Channel
,”
Phys. Fluids
,
8
(
3
), pp.
764
780
.
4.
Meinders
,
E.
,
Hanjalic
,
K.
, and
Martinuzzi
,
R.
,
1999
, “
Experimental Study of the Local Convection Heat Transfer From a Wall-Mounted Cube in Turbulent Channel Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
3
), pp.
564
573
.
5.
Lim
,
H. C.
,
Castro
,
I. P.
, and
Hoxey
,
R. P.
,
2007
, “
Bluff Bodies in Deep Turbulent Boundary Layers: Reynolds-Number Issues
,”
J. Fluid Mech.
,
571
, pp.
97
118
.
6.
Saïd
,
N. M.
,
Mhiri
,
H.
,
Bournot
,
H.
, and
Le Palec
,
G.
,
2008
, “
Experimental and Numerical Modelling of the Three-Dimensional Incompressible Flow Behaviour in the Near Wake of Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
5
), pp.
471
502
.
7.
Saïd
,
N. M.
,
Mhiri
,
H.
,
Caminat
,
P.
,
Le Palec
,
G.
, and
Bournot
,
P.
,
2008
, “
Wind Tunnel Investigation and Numerical Simulation of the Near Wake Dynamics for Rectangular Obstacles
,”
Environ. Eng. Sci.
,
25
(
7
), pp.
1037
1060
.
8.
Saïd
,
N. M.
,
Mhiri
,
H.
,
Le Palec
,
G.
, and
Bournot
,
P.
,
2005
, “
Experimental and Numerical Analysis of Pollutant Dispersion From a Chimney
,”
Atmos. Environ.
,
39
(
9
), pp.
1727
1738
.
9.
Saïd
,
N. M.
,
Habli
,
S.
,
Mhiri
,
H.
,
Le Palec
,
G.
, and
Bournot
,
H.
,
2007
, “
Flow Field Measurement in Crossflowing Elevated Jet
,”
J. Fluid. Eng.
,
129
(
5
), pp.
551
562
.
10.
Prashant
,
A.
, and
Arun
,
K. S.
,
2011
, “
Three-Dimensional Numerical Study of Flow and Species Transport in an Elevated Jet in Crossflow
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
92
105
.
11.
Jianlong
,
C.
,
Yang
,
D.
,
Xudong
,
S.
,
Yongjuan
,
Z.
, and
Shizhen
,
Z.
,
2019
, “
Investigation and Analysis of Vortex and Application of Jet in Crossflow
,”
Case Stud. Therm. Eng.
,
14
, p.
1004592
.
12.
Radhouane
,
A.
,
Said
,
N. M.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2019
, “
Wind Tunnel Experiments of Multijets in Cross Flow: Effect of the Injection Ratio
,”
Exp. Therm. Fluid. Sci.
,
105
, pp.
234
246
.
13.
Malcangio
,
D.
,
Cuthbertson
,
A.
,
Ben Meftah
,
M.
, and
Mossa
,
M.
,
2020
, “
Computational Simulation of Round Thermal Jets in an Ambient Cross Flow Using a Large-Scale Hydrodynamic Model
,”
J. Hydraul. Res.
,
58
(
6
), pp.
920
937
.
14.
Klotz
,
L.
,
Gumowski
,
K.
, and
Wesfreid
,
J. E.
,
2019
, “
Experiments on a Jet in a Crossflow in the Low-Velocity-Ratio Regime
,”
J. Fluid Mech.
,
863
, pp.
386
406
.
15.
Lei
,
W.
, and
Li-Hao
,
F.
,
2020
, “
The Interactions of Rectangular Synthetic Jets With a Laminar Cross-flow
,”
J. Fluid Mech.
,
899
.
16.
Sachidananda
,
B.
, and
Arun
,
K. S.
,
2020
, “
Evolution of the Flow Structures in an Elevated Jet in Crossflow
,”
Phys. Fluids
,
32
(
1
), p.
015102
.
17.
Inthavideth
,
X.
,
Nobumasa
,
S.
, and
Phommachanh
,
S.
,
2021
, “
Wind Tunnel Experiments on Smoke Diffusion From a Chimney
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1109
(
1
), p.
012055
.
18.
Baik
,
J. J.
, and
Kim
,
J.
,
1999
, “
A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons
,”
J. Appl. Meteorol.
,
38
(
11
), pp.
1576
1589
.
19.
Kim
,
J.-J.
, and
Baik
,
J. J.
,
2001
, “
Urban Street-Canyon Flows With Bottom Heating
,”
Atmos. Environ.
,
35
(
20
), pp.
3395
3404
.
20.
Jeong
,
S. J.
, and
Andrews
,
M. J.
,
2002
, “
Application of the k–e Turbulence Model to the High Reynolds Number Skimming Flow Field of an Urban Street Canyon
,”
Atmos. Environ.
,
36
(
7
), pp.
1137
1145
.
21.
Shirzadi
,
M.
,
Mirzaei
,
P. A.
, and
Naghashzadegan
,
M.
,
2017
, “
Improvement of k-Epsilon Turbulence Model for CFD Simulation of Atmospheric Boundary Layer Around a High-Rise Building Using Stochastic Optimization and Monte Carlo Sampling Technique
,”
J. Wind Eng. Ind. Aerodyn.
,
171
, pp.
366
379
.
22.
Yoshie
,
R.
,
Mochida
,
A.
,
Tominage
,
Y.
,
Kataoka
,
H.
,
Harimoto
,
K.
,
Nozu
,
T.
, and
Shirasawa
,
T.
,
2007
, “
Cooperative Project for CFD Prediction of Pedestrian Wind Environment in the Architectural Institute of Japan
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
9–11
), pp.
1551
1578
.
23.
Liu
,
C. H.
, and
Barth
,
M. C.
,
2002
, “
Large-Eddy Simulation of Flow and Scalar Transport in a Modeled Street Canyon
,”
J. Appl. Meteorol.
,
41
(
6
), pp.
660
673
.
24.
Liu
,
C. H.
,
Barth
,
M. C.
, and
Leung
,
D.
,
2004
, “
Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios
,”
J. Appl. Meteorol.
,
43
(
10
), pp.
1410
1424
.
25.
Liu
,
C. H.
,
Leung
,
D.
, and
Barth
,
M. C.
,
2005
, “
On the Prediction of Air and Pollutant Exchange Rates in Street Canyons of Different Aspect Ratios Using Large-Eddy Simulation
,”
Atmos. Environ.
,
39
(
9
), pp.
1567
1574
.
26.
Li
,
X.
,
Liu
,
C. H.
, and
Leung
,
D.
,
2008
, “
Large-Eddy Simulation of Flow and Pollutant Dispersion in High-Aspect-Ratio Urban Street Canyons With Wall Model
,”
Bound.-Layer Meteorol.
,
129
(
2
), pp.
249
268
.
27.
Cheng
,
W. C.
, and
Liu
,
C.
,
2011
, “
Large-Eddy Simulation of Flow and Pollutant Transports in and Above Two-Dimensional Idealized Street Canyons
,”
Bound.-Layer Meteorol.
,
139
(
3
), pp.
411
437
.
28.
Lateb
,
M.
,
Masson
,
C.
,
Stathopoulos
,
T.
, and
Bedard
,
C.
,
2011
, “
Effect of Stack Height and Exhaust Velocity on Pollutant Dispersion in the Wake of a Building
,”
Atmos. Environ.
,
45
(
29
), pp.
5150
5163
.
29.
Stathopoulos
,
T.
,
Lazure
,
L.
,
Saatho
,
P.
, and
Gupta
,
A.
,
2004
, “
The Effect of Stack Height, Stack Location and Rooftop Structures on Air Intake Contamination: A Laboratory and Full-Scale Study
,”
Institut de recherche Robert-Sauve en sante et en securite du travail (IRSST)
,
IRSST/Report-392
.
30.
Hesheng
,
Y.
, and
Jesse
,
T.
,
2017
, “
Simulation of Gaseous Pollutant Dispersion Around an Isolated Building Using the k–ω SST (Shear Stress Transport) Turbulence Model
,”
J. Air Waste Manage. Assoc.
,
67
(
5
), pp.
517
536
.
31.
Erbrink
,
J.
,
1991
, “
A Practical Model for the Calculation of σy and σz for Use in an Online Gaussian Dispersion Model for Tall Stacks, Based on Wind Fluctuations
,”
Atmos. Environ., Part A
,
25
(
2
), pp.
277
283
.
32.
Andrén
,
A.
,
1987
, “
A Combined First-Order Closure/Gaussian Dispersion Model
,”
Atmos. Environ.
,
21
(
5
), pp.
1045
1058
.
33.
Leitl
,
B. M.
,
Kastner-Klein
,
P.
,
Rau
,
M.
, and
Meroney
,
R. N.
,
1997
, “
Concentration and Flow Distributions in the Vicinity of U-Shaped Buildings: Wind-Tunnel and Computational Data
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
745
755
.
34.
Klein
,
P.
,
Rau
,
M.
,
Rockle
,
R. E.
, and
Plate
,
J.
,
1994
, “
Concentration Estimation Around Point Sources Located in the Vicinity of U-Shape Buildings and in a Built-Up Area
,”
Proceedings of the 2nd International Conference on Air Pollution
,
Barcelona, Spain
,
Sept. 27–29
, pp.
473
480
.
35.
Civiš
,
S.
,
Zelinger
,
Z.
,
Střižík
,
M.
, and
Jaňour
,
Z.
,
2001
, “Simulation of Air Pollution in a Wind Tunnel,”
Spectroscopy from Space
,
Springer
,
Dordrecht
, pp.
275
299
.
36.
Said
,
N. M.
,
Mhiri
,
H.
,
Golli
,
S.
,
Le Palec
,
G.
, and
Bournot
,
P.
,
2003
, “
Three Dimensional Numerical Calculations of a Jet in an External Crossflow: Application to Pollutant Dispersion
,”
ASME J. Heat Transfer-Trans. ASME.
,
125
(
3
), pp.
510
522
.
37.
Said
,
N. M.
,
2002
, “
Etude de la Diffusion D’un Panache Issu D’une Cheminée : Application à la Maîtrise de la Dispersion D’un Polluant
,”
Thèse de Doctorat
,
Génie Energétique, Ecole Nationale d’Ingénieurs de Monastir
. Décembre, p, 171
38.
Demuren
,
A. O.
, and
Rodi
,
W.
,
1987
, “
Three Dimensional Numerical Calculations of Flow and Plume Spreading Past Cooling Towers
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
1
), pp.
113
119
.
39.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.
40.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transf.
,
15
(
10
), pp.
1787
1806
.
You do not currently have access to this content.