Abstract

The present investigations provide a pathway for implementation of soft computing-based Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for prediction of surface heat flux from short duration temperature measurement in shock tubes or shock tunnels. Computational modeling of a coaxial thermal probe (CTP) is carried out to get the necessary temperature-time histories for different temporal variations of applied heat loads. Different possible inputs are assessed while defining the most suitable ANFIS structure for the recovery of step or ramp heat loads. This proposition is then tested for recovery of heat flux in a given range or of given time history. In each case, the uncertainty band is found to be in the acceptable range. The final assessment of this novel methodology is performed for recovery of heat flux signal from temperature measurement in a shock tube-based experiment. An in-house fabricated fast response CTP, prepared from chromel (3.25 mm diameter and 10 mm length) and constantan (0.91 mm diameter and 15 mm length) is used for these experiments. The surface heat flux recovered from the experimental signal using ANFIS is seen to have excellent agreement with the conventional analytical method in terms of both trend and magnitude, within an uncertainty band of ± 2%. Therefore, present investigations advocate the use of soft computing technique for heat flux recovery in a short duration temperature measurement due to its accuracy of prediction, lesser complexities in mathematical modeling, and being less computationally intensive.

References

1.
Agarwal
,
S.
,
Sahoo
,
N.
,
Irimpan
,
K. J.
,
Menezes
,
V.
, and
Desai
,
S.
,
2017
, “
Comparative Performance Assessments of Surface Junction Probes for Stagnation Heat Flux Estimation in a Hypersonic Shock Tunnel
,”
Int. J. Heat Mass Transfer
,
114
, pp.
748
757
.
2.
Desikan
,
S. L. N.
,
Suresh
,
K.
,
Srinivasan
,
K.
, and
Raveendran
,
P. G.
,
2016
, “
Fast Response Co-Axial Thermocouple for Short Duration Impulse Facilities
,”
Appl. Therm. Eng.
,
96
, pp.
48
56
.
3.
Nanda
,
S. R.
,
Kulkarni
,
V.
,
Sahoo
,
N.
, and
Menezes
,
V.
,
2019
, “
An Innovative Approach for Prediction of Aerodynamic Coefficients in Shock Tunnel Testing With Soft Computing Techniques
,”
Measurement
,
134
, pp.
773
780
.
4.
Nanda
,
S. R.
,
Agarwal
,
S.
,
Kulkarni
,
V.
, and
Sahoo
,
N.
,
2017
, “
Shock Tube as an Impulsive Application Device
,”
Int. J. Aerosp. Eng.
,
2017
, pp.
1
12
.
5.
Sahoo
,
N.
, and
Peetala
,
R. K.
,
2011
, “
Transient Surface Heating Rates From a Nickel Film Sensor Using Inverse Analysis
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1297
1302
.
6.
Sahoo
,
N.
,
Saravanan
,
S.
,
Jagadeesh
,
G.
, and
Reddy
,
K. P. J.
,
2006
, “
Simultaneous Measurement of Aerodynamic and Heat Transfer Data for Large Angle Blunt Cones in Hypersonic Shock Tunnel
,”
Sadhana
,
31
(
5
), pp.
557
581
.
7.
Rout
,
A. K.
,
Sahoo
,
N.
, and
Kalita
,
P.
,
2020
, “
Effectiveness of Coaxial Surface Junction Thermal Probe for Transient Measurements Through Laser Based Heat Flux Assessment
,”
Heat Mass Transfer
,
56
(
4
), pp.
1141
1152
.
8.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,” AGARDograph-AG-165, Technical Editing and Reproduction Ltd., London, Report No. AGARD-AG-165.
9.
Buragohain
,
M.
,
2009
, “
Adaptive Network Based Fuzzy Inference System (ANFIS) as a Tool for System Identification With Special Emphasis on Training Data Minimization
,”
Ph.D. thesis
,
IIT
,
Guwahati, India
.
10.
Pratihar
,
D. K.
,
2014
,
Soft Computing: Fundamentals and Applications
,
Narosa Publishing House Pvt. Ltd.
,
New Delhi
.
11.
Jang
,
J. S.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man. Cybern.
,
23
(
3
), pp.
665
685
.
12.
El-Hasnony
,
I. M.
,
Barakat
,
S. I.
, and
Mostafa
,
R. R.
,
2020
, “
Optimized ANFIS Model Using Hybrid Metaheuristic Algorithms for Parkinson’s Disease Prediction in IoT Environment
,”
IEEE Access
,
8
, pp.
119252
119270
.
13.
Bhowmik
,
S.
,
Panua
,
R.
,
Kumar Ghosh
,
S.
,
Debroy
,
D.
, and
Paul
,
A.
,
2018
, “
A Comparative Study of Artificial Intelligence Based Models to Predict Performance and Emission Characteristics of a Single Cylinder Diesel Engine Fueled With Diesosenol
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041004
.
14.
Fogaça
,
M. B.
,
Dias
,
D. T.
,
Gómez
,
S. L.
,
Behainne
,
J. J. R.
, and
Turchiello
,
R. D. F.
,
2021
, “
Effectiveness of a Shell and Helically Coiled Tube Heat Exchanger Operated With Gold Nanofluids at Low Concentration: A Multi-Level Factorial Analysis
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021029
.
15.
Singh
,
P.
, and
Talukdar
,
P.
,
2020
, “
Drying Characteristics of Elephant Foot Yam and Performance Evaluation of Convective Dryer in Kinetically and Equilibrium Controlled Regime Under Varying Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051005
.
16.
Karbalaei Mehdi
,
J.
,
Nejat
,
A.
, and
Shariat Panahi
,
M.
,
2017
, “
Heat Transfer Improvement in Automotive Brake Disks Via Shape Optimization of Cooling Vanes Using Improved TPSO Algorithm Coupled With Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011013
.
17.
Nilashi
,
M.
,
Samad
,
S.
,
Manaf
,
A. A.
,
Ahmadi
,
H.
,
Rashid
,
T. A.
,
Munshi
,
A.
, and
Ahmed
,
O. H.
,
2019
, “
Factors Influencing Medical Tourism Adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS Approach
,”
Comput. Ind. Eng.
,
137
, pp.
1
11
.
18.
Arji
,
G.
,
Ahmadi
,
H.
,
Nilashi
,
M.
,
Rashid
,
T. A.
,
Ahmed
,
O. H.
,
Aljojo
,
N.
, and
Zainol
,
A.
,
2019
, “
Fuzzy Logic Approach for Infectious Disease Diagnosis: A Methodical Evaluation, Literature and Classification
,”
Biocybern. Biomed. Eng.
,
39
(
4
), pp.
937
955
.
19.
Nilashi
,
M.
,
Ahmadi
,
H.
,
Manaf
,
A. A.
,
Rashid
,
T. A.
,
Samad
,
S.
,
Shahmoradi
,
L.
, and
Akbari
,
E.
,
2020
, “
Coronary Heart Disease Diagnosis Through Self-Organizing Map and Fuzzy Support Vector Machine With Incremental Updates
,”
Int. J. Fuzzy Syst.
,
22
(
4
), pp.
1376
1388
.
20.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
,
McGraw-Hill
,
New York
, 206, pp.
1
332
.
21.
Rout
,
A. K.
,
Sahoo
,
N.
,
Kalita
,
P.
, and
Kulkarni
,
V.
,
2019
, “
Transient Response Characteristics of a Surface Junction Probe
,”
Proceedings of the ASME 2019 Gas Turbine India Conference, Volume 1: Compressors, Fans, and Pumps; Turbines; Heat Transfer; Structures and Dynamics, Chennai, Tamil Nadu, India
,
Dec. 5–6, 2019
, ASME Paper No. GTINDIA2019-2536, p.
V001T03A006
.
22.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons,
New York
.
23.
Rout
,
A. K.
,
Sahoo
,
N.
, and
Kalita
,
P.
,
2021
, “
Transient Response Characteristics and Performance Assessment of a Calorimetric Surface Junction Probe Under Impulsive Thermal Loading
,”
ASME J. Heat Transfer
,
143
(
6
), p.
062901
.
24.
Taler
,
J.
,
1996
, “
Theory of Transient Experimental Techniques for Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3733
3748
.
25.
MathWorks
,
1998
,
MATLAB®: The Language of Technical Computing
,
MathWorks, Inc.
,
Natick, MA
.
26.
Agarwal
,
S.
, and
Sahoo
,
N.
,
2018
, “
An Experimental Investigation Towards Calibration of a Shock Tube and Stagnation Heat Flux Determination
,”
Int. J. Aerodyn.
,
6
(
1
), pp.
18
40
.
27.
Mohammed
,
H. A.
,
Salleh
,
H.
, and
Yusoff
,
M. Z.
,
2010
, “
Fast Response Surface Temperature Sensor for Hypersonic Vehicles
,”
Instrum. Exp. Tech.
,
53
(
1
), pp.
153
159
.
28.
Rout
,
A. K.
,
Agarwal
,
S.
, and
Sahoo
,
N.
,
2021
, “
Fast Response Transient Behaviour of a Coaxial Thermal Probe and Recovery of Surface Heat Flux for Shock Tube Flows
,”
Exp. Therm. Fluid. Sci.
,
127
, p.
110427
.
29.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.