Abstract

Computational fluid dynamic analysis of a phase change material (PCM) based heat sink has been carried out in the present study. The PCM used is RT44HC. Longitudinal fins made of aluminum have been considered. The influence of pertinent parameters viz., fin number, fin thickness, orientation and base thickness on melt fraction and operational time have been analyzed. The critical temperature considered for the study is 54.8 °C. The melting behavior of the PCM is simulated by using the volume of fluid (VOF) method. The design of the experiment has been performed using the Taguchi method. By using gray relational multicriteria optimization technique and multi-objective optimization on the basis of ratio analysis (MOORA) method, the best thermally performing configuration has been attained through the optimum values of operational time and melt fraction. In addition to the above, analysis of variance (ANOVA) is performed to find the most significant parameter. Based on the investigation, fin thickness and number of fins are observed to significantly influence the thermal transport.

References

1.
Ahmed
,
H. E.
,
Salman
,
B. H.
,
Kherbeet
,
A. S.
, and
Ahmed
,
M. I.
,
2018
, “
Optimization of Thermal Design of Heat Sinks: A Review
,”
Int. J. Heat Mass Transfer
,
118
, pp.
129
153
.
2.
Missaggia
,
L. J.
,
Walpole
,
J. N.
,
Liau
,
Z. L.
, and
Phillips
,
R. J.
,
1989
, “
Microchannel Heat Sinks for Two-Dimensional High-Power-Density Diode Laser Arrays
,”
IEEE J. Quantum Electron.
,
25
(
9
), pp.
1988
1992
.
3.
Vasiliev
,
L. L.
,
2005
, “
Heat Pipes in Modern Heat Exchangers
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
1
19
.
4.
Arasteh
,
H.
,
Mashayekhi
,
R.
,
Goodarzi
,
M.
,
Motaharpour
,
S. H.
,
Dahari
,
M.
, and
Toghraie
,
D.
,
2019
, “
Heat and Fluid Flow Analysis of Metal Foam Embedded in a Double-Layered Sinusoidal Heat Sink Under Local Thermal Non-Equilibrium Condition Using Nanofluid
,”
J. Therm. Anal. Calorim.
,
138
(
2
), pp.
1461
1476
.
5.
Neyestani
,
M.
,
Nazari
,
M.
,
Shahmardan
,
M. M.
,
Sharifpur
,
M.
,
Ashouri
,
M.
, and
Meyer
,
J. P.
,
2019
, “
Thermal Characteristics of CPU Cooling by Using a Novel Porous Heat Sink and Nanofluids: Comparative Experimental Study
,”
J. Therm. Anal. Calorim.
,
138
(
1
), pp.
805
817
.
6.
Markandeyulu
,
T.
,
Devanuri
,
J. K.
, and
Kiran Kumar
,
K.
,
2016
, “
On the Suitability of Phase Change Material (PCM) for Thermal Management of Electronic Components
,”
Indian J. Sci. Technol.
,
9
(
S1
), pp.
1
4
.
7.
Wang
,
X. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2007
, “
Effect of Orientation for Phase Change Material (PCM)-Based Heat Sinks for Transient Thermal Management of Electric Components
,”
Int. Commun. Heat Mass Transfer
,
34
(
7
), pp.
801
808
.
8.
Kandasamy
,
R.
,
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.
9.
Wang
,
X. Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
,
2008
, “
A Parametric Study of Phase Change Material (PCM)-Based Heat Sinks
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1055
1068
.
10.
Hosseinizadeh
,
S. F.
,
Tan
,
F. L.
, and
Moosania
,
S. M.
,
2011
, “
Experimental and Numerical Studies on Performance of PCM-Based Heat Sink With Different Configurations of Internal Fins
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
3827
3838
.
11.
Swaminathan Gopalan
,
K.
, and
Eswaran
,
V.
,
2016
, “
Numerical Investigation of Thermal Performance of PCM Based Heat Sink Using Structured Porous Media as Thermal Conductivity Enhancers
,”
Int. J. Therm. Sci.
,
104
, pp.
266
280
.
12.
Sahoo
,
S. K.
,
Rath
,
P.
, and
Das
,
M. K.
,
2016
, “
Numerical Study of Phase Change Material Based Orthotropic Heat Sink for Thermal Management of Electronics Components
,”
Int. J. Heat Mass Transfer
,
103
, pp.
855
867
.
13.
Arshad
,
A.
,
Ali
,
H. M.
,
Ali
,
M.
, and
Manzoor
,
S.
,
2017
, “
Thermal Performance of Phase Change Material (PCM) Based Pin-Finned Heat Sinks for Electronics Devices: Effect of Pin Thickness and PCM Volume Fraction
,”
Appl. Therm. Eng.
,
112
, pp.
143
155
.
14.
Ashraf
,
M. J.
,
Ali
,
H. M.
,
Usman
,
H.
, and
Arshad
,
A.
,
2017
, “
Experimental Passive Electronics Cooling: Parametric Investigation of Pin-Fin Geometries and Efficient Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
115
, pp.
251
263
.
15.
Ali
,
H. M.
, and
Arshad
,
A.
,
2017
, “
Experimental Investigation of N-Eicosane Based Circular Pin-Fin Heat Sinks for Passive Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
112
, pp.
649
661
.
16.
Kumar
,
M.
, and
Krishna
,
D. J.
,
2017
, “
Influence of Mushy Zone Constant on Thermohydraulics of a PCM
,”
Energy Procedia
,
109
, pp.
314
321
.
17.
Arshad
,
A.
,
Ali
,
H. M.
,
Yan
,
W. M.
,
Hussein
,
A. K.
, and
Ahmadlouydarab
,
M.
,
2018
, “
An Experimental Study of Enhanced Heat Sinks for Thermal Management Using N-Eicosane as Phase Change Material
,”
Appl. Therm. Eng.
,
132
, pp.
52
66
.
18.
Ali
,
H. M.
,
Arshad
,
A.
,
Jabbal
,
M.
, and
Verdin
,
P. G.
,
2018
, “
Thermal Management of Electronics Devices With PCMs Filled Pin-Fin Heat Sinks: A Comparison
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1199
1204
.
19.
Avci
,
M.
, and
Yazici
,
M. Y.
,
2018
, “
An Experimental Study on Effect of Inclination Angle on the Performance of a PCM-Based Flat-Type Heat Sink
,”
Appl. Therm. Eng.
,
131
, pp.
806
814
.
20.
Zhu
,
Z. Q.
,
Huang
,
Y. K.
,
Hu
,
N.
,
Zeng
,
Y.
, and
Fan
,
L. W.
,
2018
, “
Transient Performance of a PCM-Based Heat Sink With a Partially Filled Metal Foam: Effects of the Filling Height Ratio
,”
Appl. Therm. Eng.
,
128
, pp.
966
972
.
21.
Rehman
,
T. ur
, and
Ali
,
H. M.
,
2020
, “
Thermal Performance Analysis of Metallic Foam-Based Heat Sinks Embedded With RT-54HC Paraffin: An Experimental Investigation for Electronic Cooling
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
979
990
.
22.
Yazici
,
M. Y.
,
Avci
,
M.
, and
Aydin
,
O.
,
2019
, “
Combined Effects of Inclination Angle and Fin Number on Thermal Performance of a PCM-Based Heat Sink
,”
Appl. Therm. Eng.
,
159
, p.
113956
.
23.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Energy and Exergy Analyses of Latent Heat Storage Unit Positioned at Different Orientations—An Experimental Study
,”
Energy
,
194
, p.
116924
.
24.
Singh
,
M. R.
, and
Giri
,
A.
,
2021
, “
A Comparison of the Performance of Constant and Dual Height Pin Fins in Phase Change Material Cooling Technique
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041027
.
25.
Gaddala
,
U. M.
, and
Devanuri
,
J. K.
,
2020
, “
A Hybrid Decision-Making Method for the Selection of a Phase Change Material for Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041020
.
26.
Taghilou
,
M.
, and
Khavasi
,
E.
,
2020
, “
Thermal Behavior of a PCM Filled Heat Sink: The Contrast Between Ambient Heat Convection and Heat Thermal Storage
,”
Appl. Therm. Eng.
,
174
, p.
115273
.
27.
Akula
,
R.
, and
Balaji
,
C.
,
2021
, “
Thermal Performance of a Phase Change Material-Based Heat Sink Subject to Constant and Power Surge Heat Loads: A Numerical Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031014
.
28.
Srikanth
,
R.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigation on the Heat Transfer Performance of a PCM Based Pin Fin Heat Sink With Discrete Heating
,”
Int. J. Therm. Sci.
,
111
, pp.
188
203
.
29.
Pakrouh
,
R.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2015
, “
A Numerical Method for PCM-Based Pin Fin Heat Sinks Optimization
,”
Energy Convers. Manage.
,
103
, pp.
542
552
.
30.
Jaya Krishna
,
D.
,
2018
, “
Operational Time and Melt Fraction Based Optimization of a Phase Change Material Longitudinal Fin Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
064502
.
31.
Kalbasi
,
R.
,
Afrand
,
M.
,
Alsarraf
,
J.
, and
Tran
,
M. D.
,
2019
, “
Studies on Optimum Fins Number in PCM-Based Heat Sinks
,”
Energy
,
171
, pp.
1088
1099
.
32.
Devanuri
,
J. K.
,
2018
, “
Numerical Investigation of Aerodynamic Braking for a Ground Vehicle
,”
J. Inst. Eng. Ser. C
,
99
(
3
), pp.
329
337
.
33.
Soorya Prakash
,
K.
,
Gopal
,
P. M.
, and
Karthik
,
S.
,
2020
, “
Multi-Objective Optimization Using Taguchi Based Grey Relational Analysis in Turning of Rock Dust Reinforced Aluminum MMC
,”
Measurement
,
157
, p.
107664
.
34.
Lin
,
J. L.
, and
Lin
,
C. L.
,
2002
, “
The Use of the Orthogonal Array With Grey Relational Analysis to Optimize the Electrical Discharge Machining Process With Multiple Performance Characteristics
,”
Int. J. Mach. Tools Manuf.
,
42
(
2
), pp.
237
244
.
35.
Yunus
,
M.
,
Alsoufi
,
M. S.
, and
Munshi
,
S. M.
,
2016
, “
Taguchi-Grey Relation Analysis for Assessing the Optimal Set of Control Factors of Thermal Barrier Coatings for High-Temperature Applications
,”
Mech. Adv. Mater. Mod. Process.
,
2
(
1
), pp.
188
203
.
36.
Chakraborty
,
S.
,
2011
, “
Applications of the MOORA Method for Decision Making in Manufacturing Environment
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9–12
), pp.
1155
1166
.
37.
Tansel
,
Y. I.
, and
Yıldırım
,
S.
,
2013
, “
MOORA-Based Taguchi Optimisation for Improving Product or Process Quality
,”
Int. J. Prod. Res.
,
51
(
11
), pp.
3321
3341
.
38.
Mukhuti
,
A.
,
Rout
,
A.
, and
Tripathy
,
S.
,
2016
, “
Optimization of INCONEL 600 Using Wire EDM by MOORA and Taguchi’s Method
,”
International Conference on Electrical, Electronics, and Optimization Techniques
,
Chennai, India
,
Mar. 3–5
, pp.
1577
1582
.
39.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Optimization of Fin Parameters to Reduce Entropy Generation and Melting Time of a Latent Heat Storage Unit
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061005
.
40.
Rohit Duggal
,
R. J.
,
2017
, “
Numerical Investigation on Trapezoidal Cavity Receiver Used in LFR With Water Flow
,”
IOP Conference Series: Materials Science and Engineering
,
Hong Kong
,
Dec. 28–30
.
41.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
42.
Wojda
,
M.
, and
Wójcik
,
T. M.
,
2014
, “
Novel Solid—Solid Phase Change Material Based on Polyethylene Glycol and Cellulose Used for Temperature Stabilisation
,”
MATEC Web of Conferences
,
Krakow, Poland
,
June 30–July 3
, 18, pp.
0
3
.
You do not currently have access to this content.