Abstract

R1234ze(E) has been created as an environmentally friendly substitution of R134a. An experimental investigation on adiabatic two-phase frictional pressure drop inside a 1.88 mm horizontal minichannel with R1234ze(E) and R134a was conducted. The saturation pressure and mass flux ranged within 0.6–0.9 MPa and 450–900 kg/(m2 s). Based on the 299 measured data points, the influences of various factors, including saturation pressure, mass flux, and the like, are examined detailedly. Larger mass flux brings about larger frictional pressure drop, and vapor quality performs the same function, but saturation pressure works inversely. The frictional pressure drops between R1234ze(E) and R134a present no significant differences. The experimental data are compared against 23 predictive models, among which the one from Xu and Fang (2013, “A New Correlation of Two-Phase Frictional Pressure Drop for Condensing Flow in Pipes,” Nucl. Eng. Des., 263, pp. 87–96) gives the best accuracy. In addition, a database including 3150 experimental adiabatic two-phase frictional pressure drop data points is derived from the current study and 29 published literature. Based on the database, the 23 models are assessed, and the most effective one is from Müller-Steinhagen and Heck (1986, “A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes,” Chem. Eng. Process., 20(6), pp. 297–308). This work can provide guidance for choosing appropriate two-phase frictional pressure drop models under adiabatic conditions.

References

1.
Diani
,
A.
,
Mancin
,
S.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2016
, “
Experimental Investigation of R1234ze(E) Flow Boiling Inside a 2.4 mm ID Horizontal Microfin Tube
,”
Int. J. Refrig.
,
69
, pp.
272
284
.
2.
Jo
,
C.
,
Lee
,
D.
,
Chung
,
H. J.
,
Kang
,
Y.
, and
Kim
,
Y.
,
2020
, “
Comparative Evaluation of the Evaporation Heat Transfer Characteristics of a Low-GWP Refrigerant R-1234ze(E) Between Shell-and-Plate and Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
153
, p.
119598
.
3.
Sempértegui-Tapia
,
D. F.
, and
Ribatski
,
G.
,
2017
, “
Two-Phase Frictional Pressure Drop in Horizontal Micro-Scale Channels: Experimental Data Analysis and Prediction Method Development
,”
Int. J. Refrig.
,
79
, pp.
143
163
.
4.
Wang
,
J.
,
Wang
,
J.
,
Li
,
J.
, and
Liu
,
N.
,
2020
, “
Pressure Drop of R134a and R1234ze(E) Flow Boiling in Microchannel Arrays With Single- and Double-Side Heating
,”
Int. J. Heat Mass Transfer
,
161
, p.
120241
.
5.
Del Col
,
D.
,
Bortolato
,
M.
,
Azzolin
,
M.
, and
Bortolin
,
S.
,
2015
, “
Condensation Heat Transfer and Two-Phase Frictional Pressure Drop in a Single Minichannel With R1234ze(E) and Other Refrigerants
,”
Int. J. Refrig.
,
50
, pp.
87
103
.
6.
Del Col
,
D.
,
Bisetto
,
A.
,
Bortolato
,
M.
,
Torresin
,
D.
, and
Rossetto
,
L.
,
2013
, “
Experiments and Updated Model for Two Phase Frictional Pressure Drop Inside Minichannels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
326
337
.
7.
Yang
,
Z.-Q.
,
Chen
,
G.-F.
,
Yao
,
Y.
,
Song
,
Q.-L.
,
Shen
,
J.
, and
Gong
,
M.-Q.
,
2018
, “
Experimental Study on Flow Boiling Heat Transfer and Pressure Drop in a Horizontal Tube for R1234ze(E) Versus R600a
,”
Int. J. Refrig.
,
85
, pp.
334
352
.
8.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
9.
Chisholm
,
D.
,
1973
, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
347
358
.
10.
Friedel
,
L.
,
1979
, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two Phase Pipe Flow
,”
European Two-Phase Flow Group Meeting
,
Ispra, Italy
.
11.
Grönnerud
,
R.
,
1979
, “
Investigation of Liquid Hold-Up, Flow-Resistance and Heat Transfer in Circulation Type Evaporators, Part IV: Two-Phase Flow Resistance in Boiling Refrigerants
,”
Bull. I'Inst. Du Froid
,
16
, pp.
1972
1981
.
12.
Yan
,
Y.-Y.
, and
Lin
,
T.-F.
,
1999
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe
,”
Int. J. Heat Mass Transfer
,
42
(
4
), pp.
697
708
.
13.
Müller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process.
,
20
(
6
), pp.
297
308
.
14.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Pressure Drop in Adiabatic, Condensing and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
74
97
.
15.
Xu
,
Y.
, and
Fang
,
X.
,
2012
, “
A New Correlation of Two-Phase Frictional Pressure Drop for Evaporating Flow in Pipes
,”
Int. J. Refrig.
,
35
(
7
), pp.
2039
2050
.
16.
Yang
,
Z.
,
Gong
,
M.
,
Chen
,
G.
,
Zou
,
X.
, and
Shen
,
J.
,
2017
, “
Two-Phase Flow Patterns, Heat Transfer and Pressure Drop Characteristics of R600a During Flow Boiling Inside a Horizontal Tube
,”
Appl. Therm. Eng.
,
120
, pp.
654
671
.
17.
Li
,
H.
, and
Hrnjak
,
P.
,
2019
, “
Heat Transfer Coefficient, Pressure Drop, and Flow Patterns of R1234ze(E) Evaporating in Microchannel Tube
,”
Int. J. Heat Mass Transfer
,
138
, pp.
1368
1386
.
18.
McAdams
,
W. H.
,
Woods
,
W. K.
, and
Heroman
,
L. C.
,
1942
, “
Vapourization Inside Horizontal Tubes-II, Benzene-Oil Mixtures
,”
Trans. ASME
,
64
, pp.
193
200
.
19.
Akers
,
W. W.
,
Deans
,
H. A.
, and
Crosser
,
O. K.
,
1959
, “
Condensing Heat Transfer Within Horizontal Tubes
,”
Chem. Eng. Progress Symp. Ser.
,
55
(
29
), pp.
171
176
.
20.
Cicchitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavattarelli
,
R.
,
1960
, “
Two-Phase Cooling Experiments: Pressure Drop, Heat Transfer, and Burnout Measurements
,”
Energ. Nucl.
,
7
(
6
), pp.
407
425
.
21.
Owens
,
W. L.
,
1961
, “
Two-Phase Pressure Gradient
,”
Int. Dev. Heat Transfer (Part II)
, pp.
363
368
.
22.
Dukler
,
A. E.
,
Wicks
,
M.
, III
and
Cleveland
,
R. G.
,
1964
, “
Frictional Pressure Drop in Two-Phase Flow: A. A Comparison of Existing Correlations for Pressure Loss and Holdup
,”
AIChE J.
,
10
(
1
), pp.
38
43
.
23.
Beattie
,
D. R. H.
, and
Whalley
,
P. B.
,
1982
, “
A Simple Two-Phase Frictional Pressure Drop Calculation Method
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
83
87
.
24.
Lin
,
S.
,
Kwok
,
C. C. K.
,
Li
,
R. Y.
,
Chen
,
Z. H.
, and
Chen
,
Z. Y.
,
1991
, “
Local Frictional Pressure Drop During Vaporization of R-12 Through Capillary Tubes
,”
Int. J. Multiphase Flow
,
17
(
1
), pp.
95
102
.
25.
Mishima
,
K.
, and
Hibiki
,
T.
,
1996
, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
,
22
(
4
), pp.
703
712
.
26.
Hwang
,
Y. W.
, and
Kim
,
M. S.
,
2006
, “
The Pressure Drop in Microtubes and the Correlation Development
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1804
1812
.
27.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3246
3261
.
28.
Chen
,
I. Y.
,
Yang
,
K. S.
,
Chang
,
Y. J.
, and
Wang
,
C. C.
,
2001
, “
Two-Phase Pressure Drop of Air-Water and R-410A in Small Horizontal Tubes
,”
Int. J. Multiphase Flow
,
27
(
7
), pp.
1293
1299
.
29.
Sun
,
L.
, and
Mishima
,
K.
,
2009
, “
Evaluation Analysis of Prediction Methods for Two-Phase Flow Pressure Drop in Mini-Channels
,”
Int. J. Multiphase Flow
,
35
(
1
), pp.
47
54
.
30.
Jige
,
D.
,
Kikuchi
,
S.
,
Eda
,
H.
, and
Inoue
,
N.
,
2019
, “
Flow Boiling in Horizontal Multiport Tube: Development of New Heat Transfer Model for Rectangular Minichannels
,”
Int. J. Heat Mass Transfer
,
144
, p.
118668
.
31.
Kim
,
S.-M.
,
Kim
,
J.
, and
Mudawar
,
I.
,
2012
, “
Flow Condensation in Parallel Micro-Channels—Part 1: Experimental Results and Assessment of Pressure Drop Correlations
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
971
983
.
32.
Jige
,
D.
,
Inoue
,
N.
, and
Koyama
,
S.
,
2016
, “
Condensation of Refrigerants in a Multiport Tube With Rectangular Minichannels
,”
Int. J. Refrig.
,
67
, pp.
202
213
.
33.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
34.
Fang
,
X.
,
Xu
,
Y.
, and
Zhou
,
Z.
,
2011
, “
New Correlations of Single-Phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-Phase Friction Factor Correlations
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
897
902
.
35.
Shannak
,
B. A.
,
2008
, “
Frictional Pressure Drop of Gas Liquid Two-Phase Flow in Pipes
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3277
3284
.
36.
Chisholm
,
D.
,
1967
, “
A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
10
(
12
), pp.
1767
1778
.
37.
Souza
,
A. L.
, and
Pimenta
,
M. M.
,
1995
, “
Prediction of Pressure Drop During Horizontal Two-Phase Flow of Pure and Mixed Refrigerants
,”
Proc. ASME Conf. FED
,
210
, pp.
161
171
.
38.
Wilson
,
M. J.
,
Newell
,
T. A.
,
Chato
,
J. C.
, and
Infante Ferreira
,
C. A.
,
2003
, “
Refrigerant Charge, Pressure Drop, and Condensation Heat Transfer in Flattened Tubes
,”
Int. J. Refrig.
,
26
(
4
), pp.
442
451
.
39.
Tran
,
T. N.
,
Chyu
,
M. C.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
,
2000
, “
Two-Phase Pressure Drop of Refrigerants During Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development
,”
Int. J. Multiphase Flow
,
26
(
11
), pp.
1739
1754
.
40.
Zhang
,
M.
, and
Webb
,
R. L.
,
2001
, “
Correlation of Two-Phase Friction for Refrigerants in Small-Diameter Tubes
,”
Exp. Therm. Fluid Sci.
,
25
(
3–4
), pp.
131
139
.
41.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
2002
, “
Condensation of Halogenated Refrigerants Inside Smooth Tubes
,”
HVAC&R Res.
,
8
(
4
), pp.
429
451
.
42.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Adiabatic Two-Phase Pressure Drop in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2732
2739
.
43.
Xu
,
Y.
, and
Fang
,
X.
,
2013
, “
A New Correlation of Two-Phase Frictional Pressure Drop for Condensing Flow in Pipes
,”
Nucl. Eng. Des.
,
263
, pp.
87
96
.
44.
Moradkhani
,
M. A.
,
Hosseini
,
S. H.
,
Valizadeh
,
M.
,
Zendehboudi
,
A.
, and
Ahmadi
,
G.
,
2020
, “
A General Correlation for the Frictional Pressure Drop During Condensation in Mini/Micro and Macro Channels
,”
Int. J. Heat Mass Transfer
,
163
, p.
120475
.
45.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
Adiabatic Two-Phase Frictional Pressure Drops in Microchannels
,”
Exp. Therm. Fluid Sci.
,
31
(
7
), pp.
673
685
.
46.
Field
,
B. S.
, and
Hrnjak
,
P.
,
2007
, “
Adiabatic Two-Phase Pressure Drop of Refrigerants in Small Channels
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
704
712
.
47.
Kim
,
Y. J.
,
Jang
,
J.
,
Hrnjak
,
P. S.
, and
Kim
,
M. S.
,
2008
, “
Adiabatic Horizontal and Vertical Pressure Drop of Carbon Dioxide Inside Smooth and Microfin Tubes at Low Temperatures
,”
ASME J. Heat Transfer
,
130
(
11
), p.
111001
.
48.
da Silva Lima
,
R. J.
,
Moreno Quibén
,
J.
,
Kuhn
,
C.
,
Boyman
,
T.
, and
Thome
,
J. R.
,
2009
, “
Ammonia Two-Phase Flow in a Horizontal Smooth Tube: Flow Pattern Observations, Diabatic and Adiabatic Frictional Pressure Drops and Assessment of Prediction Methods
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2273
2288
.
49.
Rosato
,
A.
,
Mauro
,
A. W.
,
Mastrullo
,
R.
, and
Vanoli
,
G. P.
,
2009
, “
Experiments During Flow Boiling of a R22 Drop-in: R422D Adiabatic Pressure Gradients
,”
Energy Convers. Manag.
,
50
(
10
), pp.
2613
2621
.
50.
Ducoulombier
,
M.
,
Colasson
,
S.
,
Bonjour
,
J.
, and
Haberschill
,
P.
,
2011
, “
Carbon Dioxide Flow Boiling in a Single Microchannel—Part I: Pressure Drops
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
581
596
.
51.
Padilla
,
M.
,
Revellin
,
R.
,
Haberschill
,
P.
,
Bensafi
,
A.
, and
Bonjour
,
J.
,
2011
, “
Flow Regimes and Two-Phase Pressure Gradient in Horizontal Straight Tubes: Experimental Results for HFO-1234yf, R-134a and R-410A
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
1113
1126
.
52.
Lu
,
M.-C.
,
Tong
,
J.-R.
, and
Wang
,
C.-C.
,
2013
, “
Investigation of the Two-Phase Convective Boiling of HFO-1234yf in a 3.9 mm Diameter Tube
,”
Int. J. Heat Mass Transfer
,
65
, pp.
545
551
.
53.
Enoki
,
K.
,
Miyata
,
K.
,
Mori
,
H.
,
Kariya
,
K.
, and
Hamamoto
,
Y.
,
2013
, “
Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing Vertically Upward in Small Rectangular and Triangular Tubes
,”
Heat Transfer Eng.
,
34
(
11–12
), pp.
966
975
.
54.
Del Col
,
D.
,
Bortolato
,
M.
, and
Bortolin
,
S.
,
2014
, “
Comprehensive Experimental Investigation of Two-Phase Heat Transfer and Pressure Drop With Propane in a Minichannel
,”
Int. J. Refrig.
,
47
, pp.
66
84
.
55.
Manavela Chiapero
,
E.
,
Fernandino
,
M.
, and
Dorao
,
C. A.
,
2014
, “
Experimental Results on Boiling Heat Transfer Coefficient, Frictional Pressure Drop and Flow Patterns for R134a at a Saturation Temperature of 34 °C
,”
Int. J. Refrig.
,
40
, pp.
317
327
.
56.
Wang
,
S.
,
Gong
,
M. Q.
,
Chen
,
G. F.
,
Sun
,
Z. H.
, and
Wu
,
J. F.
,
2014
, “
Two-Phase Heat Transfer and Pressure Drop of Propane During Saturated Flow Boiling Inside a Horizontal Tube
,”
Int. J. Refrig.
,
41
, pp.
200
209
.
57.
Charnay
,
R.
,
Revellin
,
R.
, and
Bonjour
,
J.
,
2015
, “
Discussion on the Validity of Prediction Tools for Two-Phase Flow Pressure Drops From Experimental Data Obtained at High Saturation Temperatures
,”
Int. J. Refrig.
,
54
, pp.
98
125
.
58.
Matsuse
,
Y.
,
Enoki
,
K.
,
Mori
,
H.
,
Kariya
,
K.
, and
Hamamoto
,
Y.
,
2015
, “
Boiling Heat Transfer and Pressure Drop of a Refrigerant R32 Flowing in a Small Horizontal Tube
,”
Heat Transfer Eng.
,
37
(
7–8
), pp.
668
678
.
59.
Andrzejczyk
,
R.
,
Muszynski
,
T.
, and
Dorao
,
C. A.
,
2017
, “
Experimental Investigations on Adiabatic Frictional Pressure Drops of R134a During Flow in 5 mm Diameter Channel
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
78
87
.
60.
Garcia
,
J.
,
Porto
,
M. P.
,
Revellin
,
R.
,
Bonjour
,
J.
, and
Machado
,
L.
,
2017
, “
An Experimental Study on Two-Phase Frictional Pressure Drop for R-407c in Smooth Horizontal Tubes
,”
Int. J. Refrig.
,
73
, pp.
163
174
.
61.
Rahman
,
M. M.
,
Kariya
,
K.
, and
Miyara
,
A.
,
2017
, “
Comparison and Development of New Correlation for Adiabatic Two-Phase Pressure Drop of Refrigerant Flowing Inside a Multiport Minichannel With and Without Fins
,”
Int. J. Refrig.
,
82
, pp.
119
129
.
62.
Gao
,
Y.
,
Shao
,
S.
,
Zhan
,
B.
,
Chen
,
Y.
, and
Tian
,
C.
,
2018
, “
Heat Transfer and Pressure Drop Characteristics of Ammonia During Flow Boiling Inside a Horizontal Small Diameter Tube
,”
Int. J. Heat Mass Transfer
,
127
, pp.
981
996
.
63.
Bashar
,
M. K.
,
Nakamura
,
K.
,
Kariya
,
K.
, and
Miyara
,
A.
,
2018
, “
Experimental Study of Condensation Heat Transfer and Pressure Drop Inside a Small Diameter Microfin and Smooth Tube at Low Mass Flux Condition
,”
Appl. Sci.
,
8
(
11
), p.
2146
.
64.
Chen
,
X.
,
Hou
,
Y.
,
Chen
,
S.
,
Liu
,
X.
, and
Zhong
,
X.
,
2019
, “
Characteristics of Frictional Pressure Drop of Two-Phase Nitrogen Flow in Horizontal Smooth Mini Channels in Diabatic/Adiabatic Conditions
,”
Appl. Therm. Eng.
,
162
, p.
114312
.
65.
Azzolin
,
M.
,
Berto
,
A.
,
Bortolin
,
S.
,
Moro
,
L.
, and
Del Col
,
D.
,
2019
, “
Condensation of Ternary Low GWP Zeotropic Mixtures Inside Channels
,”
Int. J. Refrig.
,
103
, pp.
77
90
.
66.
Pabon
,
J. G.
,
Khosravi
,
A.
,
Nunes
,
R.
, and
Machado
,
L.
,
2019
, “
Experimental Investigation of Pressure Drop During Two-Phase Flow of R1234yf in Smooth Horizontal Tubes With Internal Diameters of 3.2 mm to 8.0 mm
,”
Int. J. Refrig.
,
104
, pp.
426
436
.
67.
Jige
,
D.
, and
Inoue
,
N.
,
2019
, “
Boiling Heat Transfer, Pressure Drop, and Flow Pattern in a Horizontal Square Minichannel
,”
Int. J. Heat Fluid Flow
,
78
, p.
108433
.
68.
Bashar
,
M. K.
,
Nakamura
,
K.
,
Kariya
,
K.
, and
Miyara
,
A.
,
2020
, “
Development of a Correlation for Pressure Drop of Two-Phase Flow Inside Horizontal Small Diameter Smooth and Microfin Tubes
,”
Int. J. Refrig.
,
119
, pp.
80
91
.
You do not currently have access to this content.