Abstract

Experimental and numerical investigations have been carried out for performance evaluation of plate heat exchanger (PHE) using CuO-DI water nanofluid at different volume concentrations of (ϕ = 0, 0.005, 0.01, 0.03, 0.05, and 0.07) for the Reynolds number, Re = 71–1350, Prandtl number, Pr = 3.18–13.7, and at fixed inlet temperatures of hot and cold fluids Thi = 60 °C and Tci = 20 °C, respectively. The two main influential thermo-physical properties of the nanofluid, namely, dynamic viscosity and thermal conductivity obtained for various volume fractions at different temperatures, are further utilized for performance analysis of the PHEs. The thermo-hydraulic performance of PHE is evaluated based on the J.F. factor. According to experimental and simulated results, volume concentration, ϕ = 0.03 is found to be the optimum concentration of nanofluids. The individual correlations for Nusselt number, friction factor, dynamic viscosity, and thermal conductivity in terms of nanofluid volume fraction are proposed based on the experimental results.

References

1.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.
2.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer Int. J.
,
11
(
2
), pp.
151
170
.
3.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), p.
071601
.
4.
Maxwell
,
J. C. A.
,
1881
,
Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford, UK
, pp.
1
500
.
5.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
,
99
(
8
), p.
084314
.
6.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature-Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
.
7.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Maré
,
T.
,
Boucher
,
E.
, and
Mintsa
,
H. A.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.
8.
Pastoriza-Gallego
,
M. J.
,
Casanova
,
C.
,
Legido
,
J. A.
, and
Piñeiro
,
M. M.
,
2011
, “
CuO in Water Nanofluid: Influence of Particle Size and Polydispersity on Volumetric Behaviour and Viscosity
,”
Fluid Phase Equilib.
,
300
(
1–2
), pp.
188
196
.
9.
Marcelino
,
E. W.
, and
Yoshimura
,
H. N.
,
2021
, “
A Review on Some Viscosity Models for CuO-Water Nanofluid and Their Effects on Thermal Enhancement for Automotive Applications
,”
20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
San Diego, CA
,
June 1–4
, pp.
575
583
.
10.
Al Shdaifat
,
M. Y.
,
Zulkifli
,
R.
,
Sopian
,
K.
, and
Salih
,
A. A.
,
2020
, “
Thermal and Hydraulic Performance of CuO/Water Nanofluids: A Review
,”
Micromachines
,
11
(
4
), p.
416
.
11.
Pantzalia
,
M. N.
,
Kanarisa
,
A. G.
,
Antoniadisb
,
K. D.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
,
2009
, “
Effect of Nanofluids on the Performance of a Miniature Plate Heat Exchanger With Modulated Surface
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
691
699
.
12.
Pantzalia
,
M. N.
,
Mouza
,
A. A.
, and
Paras
,
S. V.
,
2009
, “
Investigating the Efficacy of Nanofluids as Coolants in Plate Heat Exchangers (PHE)
,”
Chem. Eng. Sci.
,
64
(
14
), pp.
3290
3300
.
13.
Maré
,
T.
,
Halelfadl
,
S.
,
Sow
,
O.
,
Estellé
,
P.
,
Duret
,
S.
, and
Bazantay
,
F.
,
2011
, “
Comparison of the Thermal Performances of Two Nanofluids at Low Temperature in a Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
35
(
8
), pp.
1535
1543
.
14.
Kwon
,
Y. H.
,
Kim
,
D.
,
Li
,
C. G.
,
Lee
,
J. K.
,
Hong
,
D. S.
,
Lee
,
J. G.
,
Lee
,
S. H.
,
Cho
,
Y. H.
, and
Kim
,
S. H.
,
2011
, “
Heat Transfer and Pressure Drop Characteristics of Nanofluids in a Plate Heat Exchanger
,”
J. Nanosci. Nanotechnol.
,
11
(
7
), pp.
5769
5774
.
15.
Pandey
,
S. D.
, and
Nema
,
V. K.
,
2012
, “
Experimental Analysis of Heat Transfer and Friction Factor of Nanofluid as a Coolant in a Corrugated Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
38
(
3
), pp.
248
256
.
16.
Tiwari
,
A. K.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2013
, “
Performance Comparison of the Plate Heat Exchanger Using Different Nanofluids
,”
Exp. Therm. Fluid Sci.
,
49
(
6
), pp.
141
151
.
17.
Tiwari
,
A. K.
,
Ghosh
,
P.
,
Sarkar
,
J.
,
Dahiya
,
H.
, and
Parekh
,
J.
,
2014
, “
Numerical Investigation of Heat Transfer and Fluid Flow in Plate Heat Exchanger Using Nanofluids
,”
Int. J. Therm. Sci.
,
85
(
11
), pp.
93
103
.
18.
Kabeel
,
A. E.
,
Abou El Maaty
,
T.
, and
El Samadony
,
Y.
,
2013
, “
The Effect of Using Nanoparticles on Corrugated Plate Heat Exchanger Performance
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
221
229
.
19.
Jokar
,
A.
, and
O'Halloran
,
S. P.
,
2013
, “
Heat Transfer and Fluid Flow Analysis of Nanofluids in Corrugated Plate Heat Exchangers Using Computational Fluid Dynamics Simulation
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011002
.
20.
Zamzamian
,
A.
,
Oskouie
,
S. N.
,
Doosthoseini
,
A.
,
Joneidi
,
A.
, and
Pazouki
,
M.
,
2011
, “
Experimental Investigation of Forced Convective Heat Transfer Coefficient in Nanofluids of Al2O3/E.G. and CuO/E.G. in a Double Pipe and Plate Heat Exchangers Under Turbulent Flow
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
495
502
.
21.
Ray
,
D. R.
,
Das
,
D. K.
, and
Vajjha
,
R. S.
,
2014
, “
Experimental and Numerical Investigations of Nanofluids Performance in a Compact Minichannel Plate Heat Exchanger
,”
Int. J. Heat Mass Trans.
,
71
(
4
), pp.
732
746
.
22.
Tiwari
,
A. K.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2013
, “
Heat Transfer and Pressure Drop Characteristics of CeO2/Water Nanofluid in Plate Heat Exchanger
,”
Appl. Therm. Eng.
,
57
(
1–2
), pp.
24
32
.
23.
Javadi
,
F. S.
,
Sadeghipour
,
S.
,
Saidur
,
R.
,
BoroumandJazi
,
G.
,
Rahmatia
,
B.
, and
Elias
,
M. M.
,
2013
, “
The Effects of Nanofluid on Thermophysical Properties and Heat Transfer Characteristics of a Plate Heat Exchanger
,”
Int. Comm. Heat Mass Transfer
,
44
(
5
), pp.
58
63
.
24.
Khairul
,
M. A.
,
Alim
,
M. A.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
,
Hepbasli
,
A.
, and
Hossain
,
A.
,
2014
, “
Heat Transfer Performance and Exergy Analyses of a Corrugated Plate Heat Exchanger Using Metal Oxide Nanofluids
,”
Int. Comm. Heat Mass Transfer
,
50
(
1
), pp.
8
14
.
25.
Chen
,
T.
,
Kim
,
J.
, and
Cho
,
H.
,
2014
, “
Theoretical Analysis of the Thermal Performance of a Plate Heat Exchanger at Various Chevron Angles Using Lithium Bromide Solution With Nanofluid
,”
Int. J. Refrig.
,
48
(
12
), pp.
233
244
.
26.
Huang
,
D.
,
Wu
,
Z.
, and
Sunden
,
B.
,
2015
, “
Pressure Drop and Convective Heat Transfer of Al2O3/Water and MWCNT/Water Nanofluids in a Chevron Plate Heat Exchanger
,”
Int. J. Heat Mass Trans.
,
89
(
10
), pp.
620
626
.
27.
Tiwari
,
A. K.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2015
, “
Particle Concentration Levels of Various Nanofluids in Plate Heat Exchanger for Best Performance
,”
Int. J. Heat Mass Trans.
,
89
(
10
), pp.
1110
1118
.
28.
Bhattad
,
A.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2018
, “
Discrete Phase Numerical Model and Experimental Study of Hybrid Nanofluid Heat Transfer and Pressure Drop in Plate Heat Exchanger
,”
Int. Comm. Heat Mass Trans.
,
91
(
2
), pp.
262
273
.
29.
Khanlari
,
A.
,
Sözen
,
A.
, and
Variyenli
,
H. I.
,
2019
, “
Simulation and Experimental Analysis of Heat Transfer Characteristics in the Plate Type Heat Exchangers Using TiO2/Water Nanofluid
,”
Int. J. Num. Methods Heat Fluid Flow
,
29
(
4
), pp.
1343
1362
.
30.
Wen
,
T.
,
Lu
,
L.
,
Zhang
,
S.
, and
Zhong
,
H.
,
2021
, “
Experimental Study and CFD Modelling on the Thermal and Flow Behavior of E.G./Water ZnO Nanofluid in Multiport Mini Channels
,”
Appl. Therm. Eng.
,
182
(
1
), p.
116089
.
31.
Zheng
,
D.
,
Wang
,
J.
,
Chen
,
Z.
,
Baleta
,
J.
, and
Sunden
,
B.
,
2020
, “
Performance Analysis of a Plate Heat Exchanger Using Various Nanofluids
,”
Int. J. Heat Mass Trans.
,
158
(
13
), p.
119993
.
32.
Afshari
,
F.
,
Tuncer
,
A. D.
,
Sözen
,
A.
,
Variyenli
,
H. I.
,
Khanlari
,
A.
, and
Gürbüz
,
E. Y.
,
2022
, “
A Comprehensive Survey on Utilization of Hybrid Nanofluid in Plate Heat Exchanger With Various Number of Plates
,”
Int. J. Num. Meth. Heat Fluid Flow
,
32
(
1
), pp.
241
264
.
33.
McCants
,
D. A.
,
Hayes
,
A. M.
,
Paul
,
T. C.
,
Khan
,
J. A.
, and
Shaaban
,
A. H.
,
2019
, “
Experimental Investigation of Heat Transfer Enhancement of CuO–Water and ZnO–Water Nanofluids Flowing Over a Heated Plate
,”
ASME. J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041015
.
34.
Wilson
,
E. E.
,
1915
, “
A Basis for Rational Design of Heat Transfer Apparatus
,”
Trans. ASME
,
37
(
1
), pp.
47
70
.
35.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
36.
Venkateshan
,
S. P.
,
2015
,
Mechanical Measurements
,
John Wiley & Sons Ltd.
,
Hoboken, NJ
, pp.
1
549
.
37.
Gherasim
,
I.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
,
2011
, “
Heat Transfer and Fluid Flow in a Plate Heat Exchanger. Part II: Assessment of Laminar and Two-Equation Turbulent Models
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1499
1511
.
38.
Khan
,
T. S.
,
Khan
,
M. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2010
, “
Experimental Investigation of Single Phase Convective Heat Transfer Coefficient in a Corrugated Plate Heat Exchanger for Multiple Plate Configurations
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
1058
1065
.
39.
Okada
,
K.
,
Ono
,
M.
,
Tomimura
,
T.
,
Okuma
,
T.
,
Konno
,
H.
, and
Ohtani
,
S.
,
1972
, “
Design and Heat Transfer Characteristics of a New Plate Heat Exchanger
,”
Heat Transfer Jpn. Res.
,
1
, pp.
90
95
. .
1
.
40.
Yang
,
J.
,
Jacobi
,
A.
, and
Liu
,
W.
,
2017
, “
Heat Transfer Correlations for Single-Phase Flow in Plate Heat Exchangers Based on Experimental Data
,”
Appl. Therm. Eng.
,
113
(
4
), pp.
1547
1557
.
41.
Focke
,
W. W.
,
Zacharides
,
J.
, and
Oliver
,
I.
,
1985
, “
The Effect of the Corrugation Inclination Angle on the Thermo-Hydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Trans.
,
28
(
8
), pp.
1469
1479
.
42.
Muley
,
A.
, and
Manglik
,
R. M.
,
1999
, “
Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
1
), pp.
110
117
.
43.
Talik
,
A. C.
,
Fletcher
,
L. S.
,
Anand
,
N. K.
, and
Swanson
,
L. W.
,
1995
, “
Heat Transfer and Pressure Drop Characteristics of a Plate Heat Exchanger Using a Propylene Glycol–Water Mixture as the Working Fluid
,”
Proceedings of HTD-ASME National Heat Transfer Conference 12
,
Portland, OR
,
Aug. 5–9
, Vol.
314
, pp.
83
88
.
44.
Maslov
,
A.
, and
Kovalenko
,
L.
,
1972
, “
Hydraulic Resistance and Heat Transfer in Plate Heat Exchangers
,”
Molochnaya Promyshlenflost
,
10
(
1
), pp.
20
22
.
45.
Rosenblad
,
G.
, and
Kullendorff
,
A.
,
1975
, “
Estimating Heat Transfer From Mass Transfer Studies on Plate Heat Exchanger Surfaces
,”
Warme – und Stoffuberrragung
,
8
(
3
), pp.
187
191
.
46.
Longo
,
G. A.
, and
Gasparella
,
A.
,
2007
, “
Refrigerant R134a Vaporization Heat Transfer and Pressure Drop Inside a Small Brazed Plate Heat Exchanger
,”
Int. J. Refrig.
,
30
(
5
), pp.
821
830
.
47.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Chukwu
,
G. A.
,
2006
, “
Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)
,”
J. Nanosci. Nanotechnol
,
6
(
4
), pp.
1150
1154
.
You do not currently have access to this content.