Abstract

In gas turbine engines, the endwall misalignment (step geometries with various step heights) commonly exists between the combustor exit and the first nozzle guide vane endwall, due to assembly error, metal corrosion, and thermal expansion. The step geometries affect the secondary flow field near the endwall and coolant flow behavior, thereby leading to a significant variation in endwall film cooling, vane surface phantom cooling, and vane passage aerodynamic performances. This paper presents a detailed experimental and numerical study on endwall film cooling and vane pressure side surface phantom cooling at simulated gas turbine operating conditions (high inlet freestream turbulence level of 16%, exit Mach number of 0.85, and exit Reynolds number of 1.7 × 106). The experimental measurements were conducted at Virginia Tech’s transonic blowdown wind tunnel for two configurations: baseline cascade (HR = 0) and forward-facing step geometry (HR = −0.1). The numerical predictions were performed by solving the steady-state Reynolds-averaged Navier Stokes (RANS) with realizable k–ɛ turbulence model. Based on a double coolant temperature model, a novel numerical method for the predictions of adiabatic wall film cooling effectiveness was proposed. The qualitative and quantitative comparisons between the numerical prediction results and experimental data are provided in this paper. The results indicate that this method can reliably predict endwall film cooling distributions and vane pressure side surface phantom cooling distributions, and significantly reduce (more than 50%) numerical prediction errors. The effects of upstream step geometries were numerically studied at the design flow conditions (BR = 2.5, DR = 1.2), by quantizing the endwall film cooling effectiveness, endwall net heat flux reduction (NHFR), vane pressure side surface phantom cooling effectiveness, and total pressure loss coefficients (TPLC) for various upstream step heights: three forward-facing step heights (HR = −0.16, −0.1, and −0.06), a baseline cascade (HR = 0), and four backward-facing step heights (HR = 0.06, 0.1, 0.136, and 0.2). Results show the upstream forward-facing step geometry is beneficial for enhancing endwall film cooling (maximum enhancement level of 15%), endwall net heat flux reduction (maximum enhancement level of 10%), and vane pressure side surface phantom cooling (maximum enhancement level of 66.7%). Nevertheless, the upstream backward-facing step geometry is pernicious to the endwall film cooling, endwall heat flux reduction, and phantom cooling, and these pernicious effects have sharply deteriorated when the upstream step height is larger than a critical value (HR > 0.136). To be specific, the film cooling effectiveness (from 30% to 80%), net heat flux reduction (up to 78%), and phantom cooling effectiveness (completely disappeared) significantly decrease by introducing an overlarge backward-facing step height HR = 0.2. The upstream step geometries lead to deteriorated aerodynamic performance, though the reduction level may be slight (0.36% at HR = 0.136). These suggest that the overlarge backward-facing misalignment will increase the risk of thermal failure and must be avoided during the component assembly and the operational processes of a gas turbine.

References

1.
Han
,
J. C.
,
Datta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press/Taylor & Francis
,
Boca Raton, FL
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
,
1954
, “
A Visualization Study of Secondary Flows in Cascades
,” NACA Annual Report,
40
, pp.
147
197
.
4.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.
5.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
J. Eng. Power
,
99
(
1
), pp.
21
28
.
6.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
106
(
2
), pp.
260
267
.
7.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
8.
Abo El Ella
,
H. M.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2012
, “
Effects of an Upstream Cavity on the Secondary Flow in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051009
.
9.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vázquez
,
R.
,
2005
, “
Effects of Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
”. ASME Paper No. GT2005-68938.
10.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2009
, “
Effect of The Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
1
), p.
011004
.
11.
Lee
,
Y. J.
,
2017
, “Aerodynamic Investigation of Upstream Misalignment Over the Nozzle Guide Vane in a Transonic Cascade,”
Doctoral dissertation
,
Virginia Tech
,
Blacksburg, VA
.
12.
Arisi
,
A.
,
Mayo
,
D.
,
Li
,
Z.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Investigation of the Effect of Combustor-Nozzle Platform Misalignment on Endwall Heat Transfer at Transonic High Turbulence Conditions
”. ASME Paper No. GT2016-57763.
13.
Mayo
,
D.
,
Arisi
,
A.
,
Li
,
Z.
,
Li
,
J.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2017
, “
Effect of Combustor-Turbine Platform Misalignment on the Aerodynamics and Heat Transfer of an Axisymmetric Converging Vane Endwall at Transonic Conditions
”. ASME Paper No. GT2017-65091.
14.
Chung
,
H.
,
Hong
,
C. W.
,
Kim
,
S. H.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2016
, “
Heat Transfer Measurement Near Endwall Region of First Stage Gas Turbine Nozzle Having Platform Misalignment at Combustor-Turbine Interface
,”
J. Int. Commun. Heat and Mass Transfer
,
78
(
11
), pp.
101
111
.
15.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
110
(
12
), p.
121008
.
16.
Zhang
,
L. Z.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling—The Effect of a Back-Facing Step
,” ASME Paper No. GT2003-38319.
17.
Luke
,
L.
,
Ridge
,
S.
,
Mao
,
S.
,
Ng
,
W. F.
,
Li
,
Z.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
The Effect of Step Misalignment on Purge Flow Cooling of Nozzle Guide Vane at Transonic Conditions
,” ASME Paper No. GT2019-91810.
18.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 2—Effect of Combustor-Nozzle Guide Vane Misalignment
,”
ASME J. Turbomach.
,
144
(
5
), p.
051004
.
19.
Zhang
,
K.
,
Li
,
J.
,
Li
,
Z.
, and
Song
,
L.
,
2019
, “
Effects of Simulated Swirl Purge Flow and Mid-Passage Gap Leakage on Turbine Blade Platform Cooling and Suction Surface Phantom Cooling Performance
,”
J. Int. Heat Mass Transfer
,
129
, pp.
618
634
.
20.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Influence of the Upstream Slot Geometry on the Endwall Cooling and Phantom Cooling of Vane Suction Side Surface
,”
J. Appl. Therm. Eng
,
121
, pp.
688
700
.
21.
Zhang
,
L.
,
Yin
,
J.
,
Liu
,
K.
, and
Hee-Koo
,
M.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,” ASME Paper No. GT2015-42541.
22.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gauges: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
23.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
J. Mech. Eng.
,
75
(
1953
), pp.
3
8
.
25.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.
26.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W. F.
,
Zhang
,
L. J.
,
Koo Moon
,
H.
, and
Anthony
,
R. J.
,
2012
, “
Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051021
.
27.
Abraham
,
S.
,
Panchal
,
K.
,
Xue
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
, and
Brown
,
B. J.
,
2010
, “
Experimental and Numerical Investigations of a Transonic, High Turning Turbine Cascade With a Divergent Endwall
,” FEDSM Paper No. FEDSM-ICNMM 2010-30393.
28.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.
29.
Smith
,
D. E.
,
Bubb
,
J. V.
,
Popp
,
O.
,
Iii
,
H. C. G.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I : Unsteady Heat Transfer
,” ASME Paper No. GT2000-0202.
30.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.
31.
Li
,
Z.
,
Bai
,
B.
,
Li
,
J.
,
Mao
,
S.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow
,”
ASME J. Turbomach.
,
144
(
4
), p.
041004
.
32.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 1—Effect of Density Ratio
,”
ASME J. Turbomach.
,
144
(
5
), p.
051003
.
33.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
34.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Pattern, Including Its Effect Within the Hole
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
35.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME. J. Turbomach.
,
128
(
3
), pp.
547
554
.
36.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2005
, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,” ASME Paper No. GT2005-68900.
37.
Chen
,
P.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Simon
,
T.
,
2019
, “
Influence of Endwall 2D Contouring on Endwall Adiabatic Cooling Effectiveness and Aerodynamic Performance
,”
J. Int. Heat Mass Transfer
,
137
, pp.
690
702
.
You do not currently have access to this content.