Abstract

Wickless heat pipe heat exchangers (HPHE) consistently showed instabilities and omits many experimental tests. The performance of a heat pipe is governed by many parameters, and the effects of which may influence each other. The objective of this paper is to develop a new approach for an air–air heat pipe heat exchanger that takes into consideration the effect of heat transfer coefficients, saturation temperature, and thermal resistances inside the heat pipes as well as maximum heat transfer limit. The approach is based on analyzing inner heat pipe parameters with HPHE external working conditions. Results are also assessed for higher heat capacities ratio and found that the thermal resistances inside a heat pipe are a limiting factor, leading the HPHE system to perform poorly in particular for Cr ≤ 1. Overall heat transfer coefficients at HPHE sides as well as HPHE effectiveness as a function of Cr are assessed. Trying to follow the Chaudourne (1992, “The Heat Pipe Heat Exchangers: Design, Technology and Applications,” Design and Operation of Heat Exchangers, Springer, Berlin, Heidelberg, pp. 386–396) profile for conventional heat exchangers, HPHE effectiveness is determined and limited to 0.5 number of transferred units. The established model is verified by the existing literature and demonstrates numerical results that agree with the experimental data within a 2.86% error.

References

1.
Payakaruk
,
T.
,
Terdtoon
,
P.
, and
Ritthidech
,
S.
,
2000
, “
Correlations to Predict Heat Transfer Characteristics of an Inclined Closed Two-Phase Thermosyphon at Normal Operating Conditions
,”
Appl. Therm. Eng.
,
20
(
9
), pp.
781
790
.
2.
Brahim
,
T.
, and
Jemni
,
A.
,
2021
, “
Parametric Study of Photovoltaic/Thermal Wickless Heat Pipe Solar Collector
,”
Energy Convers. Manage.
,
239
(
114236
), p.
114236
.
3.
Brahim
,
T.
, and
Jemni
,
A.
,
2015
, “
Numerical Investigation of Roll Heat Pipe Type for Heat Exchangers Thermal Management
,”
Appl. Therm. Eng.
,
90
, pp.
638
647
.
4.
Brahim
,
T.
, and
Jemni
,
A.
,
2016
, “Compact Heat Exchangers Development,”
Heat Exchangers: Characteristics, Types and Emerging Applications
,
J. K.
Cooper
, ed.,
Nova Science Publishers
,
New York
, pp.
1
22
.
5.
Shabgard
,
H.
,
Xiao
,
B.
,
Faghri
,
A.
,
Gupta
,
R.
, and
Weissman
,
W.
,
2014
, “
Thermal Characteristics of a Closed Thermosyphon Under Various Filling Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
91
102
.
6.
Abdulsalam
,
D.
,
Aamer
,
M.
, and
Duaa
,
A.
,
2016
, “
Experimental Study of Thermal Performance of Heat Pipe Heat Exchanger
,”
Int. J. Comput. Appl.
,
143
(
6
), pp.
10
14
.
7.
Kays
,
W. M.
,
London
,
A. L.
, and
Eckert
,
E. R. G.
,
1960
, “
Compact Heat Exchangers
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
377
377
.
8.
Azad
,
E.
, and
Geoola
,
F.
,
1984
, “
A Design Procedure for Gravity-Assisted Heat Pipe Heat Exchanger
,”
J. Heat Recovery Syst.
,
4
(
2
), pp.
101
111
.
9.
Danielewicz
,
J.
,
Sayegh
,
M. A.
,
Śniechowska
,
B.
,
Szulgowska-Zgrzywa
,
M.
, and
Jouhara
,
H.
,
2014
, “
Experimental and Analytical Performance Investigation of Air to Air Two Phase Closed Thermosyphon Based Heat Exchangers
,”
Energy
,
77
, pp.
82
87
.
10.
Aliabadi
,
H.
,
Hossein
,
A.
,
Nouei
,
S. H.
, and
Khoram
,
M.
,
2009
, “
An Experimental and Theoretical Investigation on Thermal Performance of a Gas Liquid Thermosyphon Heat Pipe Heat Exchanger in a Semi-Industrial Plant
,”
J. Chem. Eng.
,
6
, pp.
13
25
.
11.
Lukitobudi
,
A. R.
,
Akbarzadeh
,
A.
,
Johnson
,
P. W.
, and
Hendy
,
P.
,
1995
, “
Design, Construction and Testing of a Thermosyphon Heat Exchanger for Medium Temperature Heat Recovery in Bakeries
,”
Heat Recovery Syst. CHP
,
15
(
5
), pp.
481
491
.
12.
Gedik
,
E.
,
Yılmaz
,
M.
, and
Kurt
,
H.
,
2016
, “
Experimental Investigation on the Thermal Performance of Heat Recovery System With Gravity Assisted Heat Pipe Charged With R134a and R410A
,”
Appl. Therm. Eng.
,
99
, pp.
334
342
.
13.
Jouhara
,
H.
, and
Merchant
,
H.
,
2012
, “
Experimental Investigation of a Thermosyphon Based Heat Exchanger Used in Energy Efficient Air Handling Units
,”
Energy
,
39
(
1
), pp.
82
89
.
14.
Liu
,
Z.
,
Wang
,
Z.
, and
Ma
,
C.
,
2006
, “
An Experimental Study on Heat Transfer Characteristics of Heat Pipe Heat Exchanger With Latent Heat Storage. Part I: Charging Only and Discharging Only Modes
,”
Energy Convers. Manage.
,
47
(
7–8
), pp.
944
966
.
15.
Liu
,
Z.
,
Wang
,
Z.
, and
Ma
,
C.
,
2006
, “
An Experimental Study on the Heat Transfer Characteristics of a Heat Pipe Heat Exchanger With Latent Heat Storage. Part II: Simultaneous Charging/Discharging Modes
,”
Energy Convers. Manage.
,
47
(
7–8
), pp.
967
991
.
16.
Wadowski
,
T.
,
Akbarzadeh
,
A.
, and
Johnson
,
P.
,
1991
, “
Characteristics of a Gravity-Assisted Heat Pipe-Based Heat Exchanger
,”
Heat Recovery Syst. CHP
,
11
(
1
), pp.
69
77
.
17.
Noie
,
S. H.
,
2006
, “
Investigation of Thermal Performance of an Air-to-Air Thermosyphon Heat Exchanger Using ɛ-NTU Method
,”
Appl. Therm. Eng.
,
26
(
5
), pp.
559
567
.
18.
Ma
,
H.
,
Yin
,
L.
,
Shen
,
X.
,
Lu
,
W.
,
Sun
,
Y.
,
Zhang
,
Y.
, and
Deng
,
N.
,
2016
, “
Experimental Study on Heat Pipe Assisted Heat Exchanger Used for Industrial Waste Heat Recovery
,”
Appl. Energy
,
169
, pp.
177
186
.
19.
Shah
,
R. K.
, and
Giovannelli
,
A. D.
,
1988
,
Heat Pipe Heat Exchanger Design Theory Heat Transfer Equipment Design
,
Hemisphere
,
Washington, DC
.
20.
Han
,
C.
, and
Zou
,
L.
,
2015
, “
Study on the Heat Transfer Characteristics of a Moderate-Temperature Heat Pipe Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
91
, pp.
302
310
.
21.
Noie-Baghban
,
S. H.
, and
Majideian
,
G. R.
,
2000
, “
Waste Heat Recovery Using Heat Pipe Heat Exchanger (HPHE) for Surgery Rooms in Hospitals
,”
Appl. Therm. Eng.
,
20
(
14
), pp.
1271
1282
.
22.
Firouzfar
,
E.
,
Soltanieh
,
M.
,
Noie
,
S. H.
, and
Saidi
,
M. H.
,
2012
, “
Investigation of Heat Pipe Heat Exchanger Effectiveness and Energy Saving in Air Conditioning Systems Using Silver Nanofluid
,”
Int. J. Environ. Sci. Technol.
,
9
(
4
), pp.
587
594
.
23.
Shabgard
,
H.
,
Allen
,
M. J.
,
Sharifi
,
N.
,
Benn
,
P. B.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2015
, “
Heat Pipe Heat Exchangers and Heat Sinks: Opportunities, Challenges, Applications, Analysis, and State of the Art
,”
Int. J. Heat Mass Transfer
,
89
, pp.
138
158
.
24.
Srimuang
,
W.
, and
Amatachaya
,
P.
,
2012
, “
A Review of the Applications of Heat Pipe Heat Exchangers for Heat Recovery
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4303
4315
.
25.
Ong
,
K. S.
,
2016
, “
Review of Heat Pipe Heat Exchangers for Enhanced Dehumidification and Cooling in Air Conditioning Systems
,”
Int. J. Low-Carbon Technol.
,
11
(
3
), pp.
416
423
.
26.
Naghavi
,
M. S.
,
Ong
,
K. S.
,
Mehrali
,
M.
,
Badruddin
,
I. A.
, and
Metselaar
,
H. S. C.
,
2015
, “
A State-of-the-Art Review on Hybrid Heat Pipe Latent Heat Storage Systems
,”
Energy Convers. Manage.
,
105
, pp.
1178
1204
.
27.
Tiari
,
S.
,
Qiu
,
S.
, and
Mahdavi
,
M.
,
2015
, “
Numerical Study of Finned Heat Pipe-Assisted Thermal Energy Storage System With High Temperature Phase Change Material
,”
Energy Convers. Manage.
,
89
, pp.
833
842
.
28.
Sharifi
,
N.
,
Bergman
,
T. L.
,
Allen
,
M. J.
, and
Faghri
,
A.
,
2014
, “
Melting and Solidification Enhancement Using a Combined Heat Pipe, Foil Approach
,”
Int. J. Heat Mass Transfer
,
78
, pp.
930
941
.
29.
Xuan
,
Y. M.
,
Xiao
,
F.
,
Niu
,
X. F.
,
Huang
,
X.
, and
Wang
,
S. W.
,
2012
, “
Research and Application of Evaporative Cooling in China: A Review (I)—Research
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3535
3546
.
30.
Alizadehdakhel
,
A.
,
Rahimi
,
M.
, and
Alsairafi
,
A. A.
,
2010
, “
CFD Modeling of Flow and Heat Transfer in a Thermosyphon
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
312
318
.
31.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2013
, “
Numerical Modelling of the Temperature Distribution in a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
122
131
.
32.
Andrzejczyk
,
R.
,
2019
, “
Experimental Investigation of the Thermal Performance of a Wickless Heat Pipe Operating With Different Fluids: Water, Ethanol, and SES36. Analysis of Influences of Instability Processes at Working Operation Parameters
,”
Energies
,
12
(
1
), p.
80
.
33.
Yau
,
Y. H.
,
2008
, “
The Use of a Double Heat Pipe Heat Exchanger System for Reducing Energy Consumption of Treating Ventilation Air in an Operating Theatre—A Full Year Energy Consumption Model Simulation
,”
Energy Build.
,
40
(
5
), pp.
917
925
.
34.
Chaudourne
,
S.
,
1992
, “The Heat Pipe Heat Exchangers: Design, Technology and Applications,”
Design and Operation of Heat Exchangers
, EUROTHERM Seminars, vol 18,
W.
Roetzel
,
P. J.
Heggs
, and
D.
Butterworth
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
386
396
.
35.
Incropera
,
F. D.
, and
Dewitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
36.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes. Modeling, Testing, and Applications
,
Wiley
,
New York
.
37.
Faghri
,
A.
,
2018
, “Heat Pipes and Thermosyphons,”
Handbook of Thermal Science and Engineering
,
F.
Kulacki
, ed.,
Springer
,
Cham
.
38.
Vasiliev
,
L. L.
,
2005
, “
Heat Pipes in Modern Heat Exchangers
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
1
19
.
39.
Shah
,
R. K.
,
Subbaroa
,
E. C.
, and
Mashelkar
,
R. A.
,
1988
,
Heat Transfer Equipment Design
,
Hemisphere
,
Washington, DC
.
40.
Wang
,
C.-C.
,
Jang
,
J. Y.
, and
Chiou
,
N. F.
,
1999
, “
Technical Note, A Heat Transfer and Friction Correlation for Wavy Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
10
), pp.
1919
1924
.
41.
Chi
,
S. W.
,
1976
,
Heat Pipe Theory and Practice: A Sourcebook
,
Hemisphere Publishing Corporation
,
Washington, DC
.
42.
Arun
,
S. M.
,
2000
, “
Heat Exchanger Design Handbook, T. Kuppan Marcel Dekker Inc., New York, 2000, 1118 pp.
,”
Drying Technol.
,
18
(
9
), pp.
2167
2168
.
43.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
44.
ITA
,
1981
, “
Heat Pipes—Performance of Two-Phase Closed Vertical Thermosyphons
,” Technical Report, IHS ESDU.
45.
Green
,
D.
, and
Perry
,
R.
,
2007
,
Perry's Chemical Engineers’ Handbook
, 8th ed.,
McGraw-Hill Professional Publishing
,
Blacklick
.
46.
Žukauskas
,
A.
,
1972
, “Heat Transfer From Tubes in Crossflow,”
Advances in Heat Transfer
,
Elsevier
,
New York
, pp.
93
160
.
47.
Cooper
,
M. G.
,
1984
, “Saturation Nucleate Pool Boiling—A Simple Correlation,”
First U.K. National Conference on Heat Transfer
,
Elsevier
,
New York
, pp.
785
793
.
48.
Faghri
,
A.
,
Chen
,
M. M.
, and
Morgan
,
M.
,
1989
, “
Heat Transfer Characteristics in Two-Phase Closed Conventional and Concentric Annular Thermosyphons
,” ASME
J. Heat Transfer-Trans. ASME
,
111
(
3
), pp.
611
618
.
49.
Park
,
Y. J.
,
Kang
,
H. K.
, and
Kim
,
C. J.
,
2002
, “
Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon to the Fill Charge Ratio
,”
Int. J. Heat Mass Transfer
,
45
(
23
), pp.
4655
4661
.
50.
Guichet
,
V.
, and
Jouhara
,
H.
,
2020
, “
Condensation, Evaporation and Boiling of Falling Films in Wickless Heat Pipes (Two-Phase Closed Thermosyphons): A Critical Review of Correlations
,”
Int. J. Thermofluids
,
1–2
, p.
100001
.
51.
Tien
,
C. L.
, and
Chung
,
K. S.
,
1979
, “
Entrainment Limits in Heat Pipes
,”
AIAA J.
,
17
(
6
), pp.
643
646
.
52.
Katto
,
Y.
,
1978
, “
Generalized Correlation of Critical Heat Flux in Natural Convection Boiling Within Confined Channels
,”
Trans. Jpn. Soc. Mech. Eng.
,
44
(
387
), pp.
3908
3911
.
53.
Sakhuja
,
R. K.
,
1973
, “
Flooding Constraint in Wickless Heat Pipes
,” ASME Publ. No. 73WA/HT-7.
54.
Nejat
,
Z.
,
1981
, “
Effects of Density Ratio on Critical Heat Flux in Closed End Vertical Tubes
,”
Int. J. Multiphase Flow
,
7
(
3
), pp.
321
327
.
55.
Jung
,
E. G.
, and
Boo
,
J. H.
,
2014
, “
Thermal Numerical Model of a High Temperature Heat Pipe Heat Exchanger Under Radiation
,”
Appl. Energy
,
135
, pp.
586
596
.
56.
Selma
,
B.
,
Désilets
,
M.
, and
Proulx
,
P.
,
2014
, “
Optimization of an Industrial Heat Exchanger Using an Open-Source CFD Code
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
241
250
.
57.
Yang
,
K. S.
,
Wu
,
Y. L.
,
Chu
,
Y. P.
,
Wu
,
Y. L.
, and
Wong
,
S. C.
,
2021
, “
Performance Tests on a Novel Un-Finned Thermosyphon Heat Exchanger Requiring a Single Charge
,”
Processes
,
9
(
6
), p.
995
.
You do not currently have access to this content.