Abstract

A jet impingement system equipped with extended jet holes was experimentally evaluated in this study. To reproduce a strong crossflow condition, the jet impingement configuration featured a multiple-jet array of 16 × 5 rows in the streamwise and pitchwise directions, respectively, and the crossflow was exhausted from one open side of the impingement channel only. The transient thermochromic liquid crystal (TLC) technique was used to measure heat transfer on the target surface for different extended lengths of 1.0–2.5 jet hole diameters with Reynolds numbers from 1.0 × 104 to 3.0 × 104. To provide complementary flow physics for elaborating the heat transfer patterns observed from the experiments, well-validated numerical simulations were carried out. Comparisons with a baseline jet hole configuration showed that the extended jet holes helped to significantly improve the heat transfer levels as well as to generate a more uniform distribution pattern by suppressing the crossflow. Despite an aerodynamic penalty, the extended jet holes provided much higher heat transfer levels at equal pumping power consumption. The flow fields obtained by the numerical simulations revealed that the jets issued from the extended jet holes were straighter and had less mixing with the crossflow, resulting in a higher jet momentum impinging onto the target. Most importantly, it was found that the dominated flow mechanism of the extended jet holes was to prevent the jets from being redirected by the crossflow in strong crossflow conditions, rather than reducing the jet-to-target distance.

References

1.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
064001
.
2.
Dutta
,
S.
, and
Singh
,
P.
,
2021
, “
Opportunities in Jet-Impingement Cooling for Gas-Turbine Engines
,”
Energies
,
14
(
20
), p.
6587
.
3.
Ikhlaq
,
M.
,
Al-Abdeli
,
Y. M.
, and
Khiadani
,
M.
,
2019
, “
Transient Heat Transfer Characteristics of Swirling and Non-Swirling Turbulent Impinging Jets
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109917
.
4.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
89
98
.
5.
Bu
,
X.
,
Peng
,
L.
,
Lin
,
G.
,
Bai
,
L.
, and
Wen
,
D.
,
2016
, “
Jet Impingement Heat Transfer on a Concave Surface in a Wing Leading Edge: Experimental Study and Correlation Development
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
199
207
.
6.
Nagesha
,
K.
,
Srinivasan
,
K.
, and
Sundararajan
,
T.
,
2020
, “
Enhancement of Jet Impingement Heat Transfer Using Surface Roughness Elements at Different Heat Inputs
,”
Exp. Therm. Fluid Sci.
,
112
, p.
109995
.
7.
Ansu
,
U.
,
Godi
,
S. C.
,
Pattamatta
,
A.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigation of the Inlet Condition on Jet Impingement Heat Transfer Using Liquid Crystal Thermography
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
363
375
.
8.
Patil
,
V. S.
, and
Vedula
,
R. P.
,
2018
, “
Local Heat Transfer for Jet Impingement Onto a Concave Surface Including Injection Nozzle Length to Diameter and Curvature Ratio Effects
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
375
389
.
9.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
10.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.
11.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
.
12.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1–Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
4
), pp.
872
879
.
13.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
,
Jet Array Impingement With Crossflow–Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,
NASA
,
Washington, DC
. Report No. NASA-CR-3373
14.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
9
), p.
092201
.
15.
Li
,
W. H.
,
Xu
,
M. H.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2017
, “
Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impingement Jet Array, Including Jets With Low Impingement Distance and Inclined Angle
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
1
), p.
012201
.
16.
Gao
,
L.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2005
, “
Impingement Heat Transfer, Part I: Linearly Stretched Arrays of Holes
,”
AIAA J. Thermophys. Heat Transfer
,
19
(
1
), pp.
57
65
.
17.
Schueren
,
S.
,
Hoefler
,
F.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
,
2013
, “
Heat Transfer in an Oblique Jet Impingement Configuration With Varying Jet Geometries
,”
ASME J. Turbomach.
,
135
(
2
), p.
021010
.
18.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.
19.
Esposito
,
E. I.
,
Ekkad
,
S. V.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2009
, “
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
2
), p.
021001
.
20.
Chi
,
Z. R.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Experimental and Numerical Study of The Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.
21.
Wang
,
C.
,
Wang
,
L.
, and
Sunden
,
B.
,
2015
, “
A Novel Control of Jet Impingement Heat Transfer in Cross-Flow by a Vortex Generator Pair
,”
Int. J. Heat Mass Transfer
,
88
, pp.
82
90
.
22.
Liu
,
K.
, and
Zhang
,
Q.
,
2020
, “
A Novel Multi-Stage Impingement Cooling Scheme—Part I: Concept Study
,”
ASME J. Turbomach.
,
142
(
12
), p.
121008
.
23.
Tepe
,
A. U.
,
Yestiken
,
Y.
,
Uysal
,
U.
, and
Arslan
,
K.
,
2020
, “
Experimental and Numerical Investigation of Jet Impingement Cooling Using Extended Jet Holes
,”
Int. Heat Mass Transfer
,
158
, p.
119945
.
24.
Madhavan
,
S.
,
Ramakrishnan
,
K. R.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2020
, “
Jet Impingement Heat Transfer Enhancement by U-Shaped Crossflow Diverters
,”
ASME J Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041005
.
25.
Kim
,
T.
,
Jung
,
E. Y.
,
Bang
,
M.
,
Lee
,
C.
,
Moon
,
H. K.
, and
Cho
,
H. H.
,
2021
, “
Heat Transfer Measurements for Array Jet Impingement With Castellated Wall
,”
ASME J. Turbomach.
,
144
(
3
), p.
031009
.
26.
Yang
,
X.
,
Wu
,
H.
, and
Feng
,
Z. P.
,
2022
, “
Jet Impingement Heat Transfer Characteristics With Variable Extended Jet Holes Under Strong Crossflow Conditions
,”
Aerospace
,
9
(
1
), p.
44
.
27.
Han
,
J. C.
, and
Wright
,
L. M.
,
2020
,
Experimental Methods in Heat Transfer and Fluid Mechanics
,
CRC Press
,
Boca Raton, FL
.
28.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill International Editions
,
New York
.
29.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons
,
Hoboken, NJ
.
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
31.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
3
), pp.
526
531
.
32.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
,
Guo
,
F. S.
,
Ding
,
L.
, and
Simon
,
T. W.
,
2009
, “
Experimental and Numerical Investigations of Overall Cooling Effectiveness on a Vane Endwall With Jet Impingement and Film Cooling
,”
Appl. Therm. Eng.
,
148
, pp.
1148
1163
.
You do not currently have access to this content.