Abstract

In the present study, experimental and numerical studies are conducted to identify and improve the thermal properties of the most commonly used hollow concrete blocks in Morocco. The experimental approach consists of characterizing the thermal conductivity and thermal capacity of the basic materials using the guarded hot plate and the differential calorimeter, respectively. The obtained properties have been exploited as input data in the numerical approach to investigate the coupled heat transfer through the concrete blocks using the approximation calculation method suggested by EN ISO 6946, and the three-dimensional numerical simulations using the commercial software ansys fluent. The obtained results showed that the average differences between the 1D and 3D calculations are less than 7.5% concerning the five different studies. In addition, the increase in the width and the number of cavities leads to gain a significant decrease in heat loss and an increase in thermal resistance. For block B4 improvement, the cavities with the previously characterized insulation have been partially filled. The proposed technique ensure high thermal performance by reducing the heat flow at 32%, which increased the thermal resistance of the block by 40.5%.

References

1.
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
1999
, “
Simulation Numérique des Transferts Thermiques Couplés à Travers les Parois Alvéolaires des Batiments
,”
Int. J. Therm. Sci.
,
38
(
8
), pp.
719
730
.
2.
Boukendil
,
M.
,
Abdelbaki
,
A.
, and
Zrikem
,
A.
,
2011
, “
Etude Numérique des Transferts de Chaleur Couplés Dans une Paroi Alvéolaire Soumise à une Excitation Sinusoidale
,”
Rev. De. Mécanique Appliquée Et. Théorique
,
2
(
4
), pp.
337
346
.
3.
Ait-taleb
,
T.
,
Abdelbaki
,
A.
, and
Zrikem
,
A.
,
2008
, “
Numerical Simulation of Coupled Heat Transfers by Conduction, Natural Convection and Radiation in Hollow Structures Heated From Below or Above
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
378
387
.
4.
Khatamifar
,
M.
,
Lin
,
W.
,
Armfield
,
S. W.
,
Holmes
,
D.
, and
Kirkpatrick
,
M. P.
,
2017
, “
Conjugate Natural Convection Heat Transfer in a Partitioned Differentially-Heated Square Cavity
,”
Int. Commun. Heat Mass Transf.
,
81
, pp.
92
103
.
5.
Yang
,
G.
, and
Wu
,
J. Y.
,
2016
, “
Effects of Natural Convection, Wall Thermal Conduction, and Thermal Radiation on Heat Transfer Uniformity at a Heated Plate Located at the Bottom of a Three-Dimensional Rectangular Enclosure
,”
Numer. Heat Transf. Part A: Appl.
,
69
(
6
), pp.
589
606
.
6.
Kolsi
,
L.
,
Abidi
,
A.
,
Maatki
,
C.
,
Borjini
,
N. M.
, and
Aissia
,
B. H.
,
2011
, “
Combined Radiation-Natural Convection in Three-Dimensional Verticals Cavities
,”
Therm. Sci.
,
15
(
suppl. 2
), pp.
383
390
.
7.
Laaroussi
,
N.
,
Lauriat
,
G.
,
Raefat
,
S.
,
Garoum
,
M.
, and
Ahachad
,
M.
,
2017
, “
An Example of Comparison Between ISO Norm Calculations and Full CFD Simulations of Thermal Performances of Hollow Bricks
,”
J. Build. Eng.
,
11
, pp.
69
81
.
8.
ISO, E. 6946
,
2015
, “
Building Components and Building Elements–Thermal Resistance and Thermal Transmittance–Calculation Method
,”,
International Organisation for Standardization, ISO, Geneva, 1923
.
9.
Kočí
,
J.
,
Maděra
,
J.
, and
Černý
,
R.
,
2015
, “
A Fast Computational Approach for the Determination of Thermal Properties of Hollow Bricks in Energy-Related Calculations
,”
Energy
,
83
, pp.
749
755
.
10.
Henrique Dos Santos
,
G.
,
Fogiatto
,
M. A.
, and
Mendes
,
N.
,
2008
, “
Numerical Analysis of Thermal Transmittance of Hollow Concrete Blocks
,”
J. Build. Phys.
,
41
(
1
), pp.
7
24
.
11.
Baig
,
H.
, and
Antar
,
M. A.
,
2008
, “
Conduction/Natural Convection Analysis of Heat Transfer Across Multi-Layer Building Blocks
,”
Euro. Therm. Sci.
,
5
, pp.
1
8
.
12.
Al-Tamimi
,
A. S.
,
Al-Osta
,
M. A.
,
Al-Amoudi
,
O. S. B.
, and
Ben-Mansour
,
R.
,
2017
, “
Effect of Geometry of Holes on Heat Transfer of Concrete Masonry Bricks Using Numerical Analysis
,”
Arab. J. Sci. Eng.
,
42
(
9
), pp.
3733
3749
.
13.
Antar
,
M. A.
, and
Baig
,
H.
,
2009
, “
Conjugate Conduction-Natural Convection Heat Transfer in a Hollow Building Block
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3716
3720
.
14.
Oluwole
,
O.
,
Joshua
,
J. S.
, and
Nwagwo
,
H. O.
,
2012
, “
Finite Element Modeling of Low Heat Conducting Building Bricks
,”
J. Miner. Mater. Charact. Eng.
,
11
, pp.
800
806
.
15.
Kanellopoulos
,
G.
,
Koutsomarkos
,
V. G.
,
Kontoleon
,
K. J.
, and
Georgiadis-Filikas
,
K.
,
2017
, “
Numerical Analysis and Modelling of Heat Transfer Processes Through Perforated Clay Brick Masonry Walls
,”
Procedia Environ. Sci.
,
38
, pp.
492
499
.
16.
Zhang
,
Y.
,
Du
,
K.
,
He
,
J.
,
Yang
,
L.
,
Li
,
Y.
, and
Li
,
S.
,
2014
, “
Impact Factors Analysis on the Thermal Performance of Hollow Block Wall
,”
Energy Build.
,
75
, pp.
330
341
.
17.
Martínez
,
M.
,
Huygen
,
N.
,
Sanders
,
J.
, and
Atamturktur
,
S.
,
2018
, “
Thermo-Fluid Dynamic Analysis of Concrete Masonry Units via Experimental Testing and Numerical Modeling
,”
J. Build. Eng.
,
19
, pp.
80
90
.
18.
Muñoz Velasco
,
P.
,
Mendívil
,
M. A.
,
Morales
,
M. P.
, and
Muñoz
,
L.
,
2016
, “
Eco-Fired Clay Bricks Made by Adding Spent Coffee Grounds: A Sustainable Way to Improve Buildings Insulation
,”
Mater. Struct. Constr.
,
49
(
1
), pp.
641
650
.
19.
Sutcu
,
M.
,
Del Coz Díaz
,
J. J.
,
Álvarez Rabanal
,
F. P.
,
Gencel
,
O.
, and
Akkurt
,
S.
,
2014
, “
Thermal Performance Optimization of Hollow Clay Bricks Made Up of Paper Waste
,”
Energy Build.
,
75
, pp.
96
108
.
20.
Li
,
J.
,
Meng
,
X.
,
Gao
,
Y.
,
Mao
,
W.
,
Luo
,
T.
, and
Zhang
,
L.
,
2018
, “
Effect of the Insulation Materials Filling on the Thermal Performance of Sintered Hollow Bricks
,”
Case Stud. Therm. Eng.
,
11
, pp.
62
70
.
21.
Bassiouny
,
R.
,
Ali
,
M. R.
, and
NourEldeen
,
E. S. H.
,
2016
, “
Modeling the Thermal Behavior of Egyptian Perforated Masonry Red Brick Filled With Material of Low Thermal Conductivity
,”
J. Build. Eng.
,
5
, pp.
158
164
.
22.
Wernery
,
J.
,
Ben-Ishai
,
A.
,
Binder
,
B.
, and
Brunner
,
S.
,
2017
, “
Aerobrick—An Aerogel-Filled Insulating Brick
,”
Energy Procedia
,
134
, pp.
490
498
.
23.
Nagy
,
B.
,
2018
, “
Hygrothermal Modelling of Masonry Blocks Filled With Thermal Insulation
,”
MATEC Web of Conferences
,
Cracow University of Technology, Poland
.
24.
Zukowski
,
M.
, and
Haese
,
G.
,
2010
, “
Experimental and Numerical Investigation of a Hollow Brick Filled With Perlite Insulation
,”
Energy Build.
,
42
(
9
), pp.
1402
1408
.
25.
Nagy
,
B.
, and
Stocker
,
G.
,
2019
, “
Numerical Analysis of Thermal and Moisture Bridges in Insulation Filled Masonry Walls and Corner Joints
,”
Period. Polytech., Civ. Eng.
,
63
(
2
), pp.
446
455
.
26.
Al-Hazmy
,
M. M.
,
2006
, “
Analysis of Coupled Natural Convection–Conduction Effects on the Heat Transport Through Hollow Building Blocks
,”
EnergyBuild.
,
38
(
5
), pp.
515
521
.
27.
ANSYS Fluent 18, User's Guide/Theory Guide, Ansys Inc.
28.
N. I. 11357-4
,
Plastics—Differential Scanning Calorimetry (DSC)—Part 4: Determination of Specific Heat Capacity
.
29.
ISO, EN. 8302
,
1991
,
''Thermal Insulation-Determination of Steady-State Thermal Resistance and Related Properties-Guarded Hot Plate Apparatus.'' International Organization for Standardization, New York
.
30.
ISO/TS 17892-2
,
2004
, “
Reconnaissance et essais géotechniques—Essais de laboratoire sur les sols—Partie 2: Détermination de la masse volumique d'un sol fin
.”
31.
Ouakarrouch
,
M.
,
El Azhary
,
K.
,
Laaroussi
,
N.
, and
Garoum
,
M.
,
2019
, “
Thermal Performances of Hollow Concrete Blocks Based on ISO Norm Calculations
,”
2019 7th International Renewable and Sustainable Energy Conference (IRSEC)
,
Agadir, Morocco
,
Nov. 27–30
, pp.
1
5
.
32.
Ouakarrouch
,
M.
,
El Azhary
,
K.
,
Laaroussi
,
N.
,
Garoum
,
M.
, and
Feiz
,
A.
,
2019
, “
Three-Dimensional Numerical Simulation of Conduction, Natural Convection, and Radiation Through Alveolar Building Walls
,”
Case Studies in Construction Materials
,
11
, p.
e00249
.
33.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
John Wiley & Sons
,
Durham, NC
.
You do not currently have access to this content.