Abstract

Emission and combustion parameters of common rail direct injection combustion engine with different proportions of exhaust gas recirculation (EGR) rate and long-carbon-chain alcohol blends on performance are the main motive of this research. To lessen the dependency on diesel fuel and reduce harmful emissions, 1-hexanol is used, as it has better fuel properties than small-carbon-chain alcohol, and it can be blended with diesel. In common rail direct injection combustion engine, research was conducted, in which fuel blends (1-hexanol-diesel) were variant, i.e., (10%, 20%, 30%) by volume whereas engine speed was fixed at 1500 rpm by varying the load at 25% step from 25 to 100%. Blends were examined with various exhaust gas recirculation rates (10 and 20%) to see what impact they have on engine properties. It was observed that the higher the proportion of 1-Hexanol, the lower the engine performance. The research revealed that for the blend D70H30, around 8.24% rise in brake specific fuel consumption, slight rise in hydrocarbon, 2.80% reduction in brake thermal efficiency (BTE), and 16.70% reduction in nitrogen oxides (NOx) emission. With 1-hexanol-diesel blends, the engine is noted to function effortlessly, so as a substitute to the diesel upto 30% of the 1-hexanol can be used while increasing the total cost of implementation. Increase in hexanol and EGR percentage shown negative impact on the brake thermal efficiency, HC and CO emission however, NOx and CO2 emissions were found to be decreased.

References

1.
Yilmaz
,
I. T.
, and
Gumus
,
M.
,
2018
, “
Effects of Hydrogen Addition to the Intake Air on Performance and Emissions of Common Rail Diesel Engine
,”
Energy
,
142
, pp.
1104
1113
.
2.
Vigneswaran
,
R.
,
Annamalai
,
K.
,
Dhinesh
,
B.
, and
Krishnamoorthy
,
R.
,
2018
, “
Experimental Investigation of Un-Modified Diesel Engine Performance, Combustion and Emission with Multipurpose Additive Along With Water-in-Diesel Emulsion Fuel
,”
Energy Convers. Manage.
,
172
, pp.
370
380
.
3.
Kampa
,
M.
, and
Castanas
,
E.
,
2008
, “
Human Health Effects of Air Pollution
,”
Environ. Pollut.
,
151
(
2
), pp.
362
367
.
4.
Lapuerta
,
M.
,
Rodríguez-Fernández
,
J.
,
Fernández-Rodríguez
,
D.
, and
Patiño-Camino
,
R.
,
2018
, “
Cold Flow and Filterability Properties of n-Butanol and Ethanol Blends With Diesel and Biodiesel Fuels
,”
Fuel
,
224
, pp.
552
559
.
5.
Atmanli
,
A.
, and
Yilmaz
,
N.
,
2018
, “
A Comparative Analysis of n-Butanol/Diesel and 1-Pentanol/Diesel Blends in a Compression Ignition Engine
,”
Fuel
,
234
, pp.
161
169
.
6.
Zhu
,
L.
,
Xiao
,
Y.
,
Cheung
,
C. S.
,
Guan
,
C.
, and
Huang
,
Z.
,
2016
, “
Combustion, Gaseous and Particulate Emission of a Diesel Engine Fueled With n-Pentanol (C5 Alcohol) Blended With Waste Cooking Oil Biodiesel
,”
Appl. Therm. Eng.
,
102
, pp.
73
79
.
7.
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2016
, “
Use of Higher Alcohol Biofuels in Diesel Engines: A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
84
115
.
8.
Campos-Fernández
,
J.
,
Arnal
,
J. M.
,
Gómez
,
J.
, and
Dorado
,
M. P.
,
2012
, “
A Comparison of Performance of Higher Alcohols/Diesel Fuel Blends in a Diesel Engine
,”
Appl. Energy
,
95
, pp.
267
275
.
9.
Rao
,
G.
,
Kumar
,
G. N.
, and
Herbert
,
M.
,
2019
, “
Effect of Injection Pressure on the Performance and Emission Characteristics of the CI Engine Using Vateria indica Biodiesel
,”
Int. J. Ambient Energy
,
40
(
7
), pp.
758
767
.
10.
Yilmaz
,
N.
, and
Atmanli
,
A.
,
2017
, “
Experimental Assessment of a Diesel Engine Fueled With Diesel-Biodiesel-1-Pentanol Blends
,”
Fuel
,
191
, pp.
190
197
.
11.
Yilmaz
,
N.
,
Ileri
,
E.
, and
Atmanli
,
A.
,
2016
, “
Performance of Biodiesel/Higher Alcohols Blends in a Diesel Engine
,”
Int. J. Energy Res.
,
40
(
8
), pp.
1134
1143
.
12.
Atmanli
,
A.
,
2016
, “
Comparative Analyses of Diesel-Waste Oil Biodiesel and Propanol, n-Butanol or 1-Pentanol Blends in a Diesel Engine
,”
Fuel
,
176
, pp.
209
215
.
13.
Yilmaz
,
N.
,
Atmanli
,
A.
, and
Trujillo
,
M.
,
2017
, “
Influence of 1-Pentanol Additive on the Performance of a Diesel Engine Fueled With Waste Oil Methyl Ester and Diesel Fuel
,”
Fuel
,
207
, pp.
461
469
.
14.
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2016
, “
Effects of iso-Butanol/Diesel and n-Pentanol/Diesel Blends on Performance and Emissions of a DI Diesel Engine Under Premixed LTC (Low Temperature Combustion) Mode
,”
Fuel
,
170
, pp.
49
59
.
15.
Campos-Fernandez
,
J.
,
Arnal
,
J. M.
,
Gomez
,
J.
,
Lacalle
,
N.
, and
Dorado
,
M. P.
,
2013
, “
Performance Tests of a Diesel Engine Fueled With Pentanol/Diesel Fuel Blends
,”
Fuel
,
107
, pp.
866
872
.
16.
Yang
,
K.
,
Wei
,
L.
,
Cheung
,
C. S.
,
Tang
,
C.
, and
Huang
,
Z.
,
2017
, “
The Effect of Pentanol Addition on the Particulate Emission Characteristics of a Biodiesel Operated Diesel Engine
,”
Fuel
,
209
, pp.
132
140
.
17.
Saravanan
,
S.
,
2015
, “
Effect of Exhaust Gas Recirculation (EGR) on Performance and Emissions of a Constant Speed DI Diesel Engine Fueled With Pentanol/Diesel Blends
,”
Fuel
,
160
, pp.
217
226
.
18.
Ma
,
Y.
,
Huang
,
R.
,
Huang
,
S.
,
Zhang
,
Y.
,
Xu
,
S.
, and
Wang
,
Z.
,
2017
, “
Experimental Investigation on the Effect of n-Pentanol Blending on Spray, Ignition and Combustion Characteristics of Waste Cooking Oil Biodiesel
,”
Energy Convers. Manage.
,
148
, pp.
440
455
.
19.
ASTM
,
2007
, “d240-09 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter,”
Annual Book of ASTM Standards
,
A.
Drews
, ed.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
5
, pp.
117
124
.
20.
Subcommittee
,
A. S. T. M.
,
2006
,
Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids:(and Calculation of Dynamic Viscosity)
,
ASTM International
,
West Conshohocken, PA
.
21.
Lamani
,
V. T.
,
Yadav
,
A. K.
, and
Gottekere
,
K. N.
,
2017
, “
Performance, Emission, and Combustion Characteristics of Twin-Cylinder Common Rail Diesel Engine Fuelled With Butanol-Diesel Blends
,”
Environ. Sci. Pollut. Res.
,
24
(
29
), pp.
23351
23362
.
22.
Yilmaz
,
N.
, and
Atmanli
,
A.
,
2017
, “
Experimental Evaluation of a Diesel Engine Running on the Blends of Diesel and Pentanol as a Next Generation Higher Alcohol
,”
Fuel
,
210
, pp.
75
82
.
23.
Nour
,
M.
,
Attia
,
A. M.
, and
Nada
,
S. A.
,
2019
, “
Improvement of CI Engine Combustion and Performance Running on Ternary Blends of Higher Alcohol (Pentanol and Octanol)/Hydrous Ethanol/Diesel
,”
Fuel
,
251
, pp.
10
22
.
24.
Huang
,
H.
,
Lv
,
D.
,
Zhu
,
J.
,
Chen
,
Y.
,
Zhu
,
Z.
,
Pan
,
M.
,
Huang
,
R.
, and
Jia
,
C.
,
2018
, “
Development and Validation of a New Reduced Diesel/n-Pentanol Mechanism for Diesel Engine Applications
,”
Energy Fuels
,
32
(
9
), pp.
9934
9948
.
25.
Damodharan
,
D.
,
Sathiyagnanam
,
A. P.
,
Rana
,
D.
,
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2018
, “
Combined Influence of Injection Timing and EGR on Combustion, Performance and Emissions of DI Diesel Engine Fueled With Neat Waste Plastic Oil
,”
Energy Convers. Manage.
,
161
, pp.
294
305
.
26.
Verma
,
S.
,
Das
,
L. M.
,
Kaushik
,
S. C.
, and
Bhatti
,
S. S.
,
2019
, “
The Effects of Compression Ratio and EGR on the Performance and Emission Characteristics of Diesel-Biogas Dual Fuel Engine
,”
Appl. Therm. Eng.
,
150
, pp.
1090
1103
.
27.
Saravanan
,
S.
,
Nagarajan
,
G.
, and
Sampath
,
S.
,
2014
, “
A Correlation for the Ignition Delay of a CI Engine Fuelled With Diesel and Biodiesel
,”
Int. J. Green Energy
,
11
(
5
), pp.
542
557
.
28.
Wei
,
L.
,
Cheung
,
C. S.
, and
Huang
,
Z.
,
2014
, “
Effect of n-Pentanol Addition on the Combustion, Performance and Emission Characteristics of a Direct-Injection Diesel Engine
,”
Energy
,
70
, pp.
172
180
.
29.
Westbrook
,
C. K.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2006
, “
Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions From Diesel Engines
,”
J. Phys. Chem. A
,
110
(
21
), pp.
6912
6922
.
30.
Ickes
,
A. M.
,
Bohac
,
S. V.
, and
Assanis
,
D. N.
,
2009
, “
Effect of Fuel Cetane Number on a Premixed Diesel Combustion Mode
,”
Int. J. Eng. Res.
,
10
(
4
), pp.
251
263
.
31.
Pan
,
M.
,
Huang
,
R.
,
Liao
,
J.
,
Jia
,
C.
,
Zhou
,
X.
,
Huang
,
H.
, and
Huang
,
X.
,
2019
, “
Experimental Study of the Spray, Combustion, and Emission Performance of a Diesel Engine With High n-Pentanol Blending Ratios
,”
Energy Convers. Manage.
,
194
, pp.
1
10
.
32.
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
, and
Binder
,
K. B.
,
2008
, “
Effect of Exhaust Gas Recirculation (EGR) Temperature for Various EGR Rates on Heavy Duty DI Diesel Engine Performance and Emissions
,”
Energy
,
33
(
2
), pp.
272
283
.
33.
Thangaraja
,
J.
, and
Kannan
,
C.
,
2016
, “
Effect of Exhaust Gas Recirculation on Advanced Diesel Combustion and Alternate Fuels—A Review
,”
Appl. Energy
,
180
, pp.
169
184
.
34.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 3—Wear Assessment of Liner and Piston Rings, Engine Deposits, and Operational Issues
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042309
.
35.
Yilmaz
,
N.
,
Atmanli
,
A.
, and
Vigil
,
F. M.
,
2018
, “
Quaternary Blends of Diesel, Biodiesel, Higher Alcohols and Vegetable Oil in a Compression Ignition Engine
,”
Fuel
,
212
, pp.
462
469
.
36.
Mahalingam
,
A.
,
Devarajan
,
Y.
,
Radhakrishnan
,
S.
,
Vellaiyan
,
S.
, and
Nagappan
,
B.
,
2018
, “
Emissions Analysis on Mahua Oil Biodiesel and Higher Alcohol Blends in Diesel Engine
,”
Alexandria Eng. J.
,
57
(
4
), pp.
2627
2631
.
37.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 1—No Load and Highway Driving Emissions, and Acceleration Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042307
.
38.
Nanthagopal
,
K.
,
Ashok
,
B.
,
Garnepudi
,
R. S.
,
Tarun
,
K. R.
, and
Dhinesh
,
B.
,
2019
, “
Investigation on Diethyl Ether as an Additive With Calophyllum inophyllum Biodiesel for CI Engine Application
,”
Energy Convers. Manage.
,
179
, pp.
104
113
.
39.
Atmanli
,
A.
,
2016
, “
Effects of a Cetane Improver on Fuel Properties and Engine Characteristics of a Diesel Engine Fueled With the Blends of Diesel, Hazelnut Oil and Higher Carbon Alcohol
,”
Fuel
,
172
, pp.
209
217
.
40.
Fontaras
,
G.
,
Grigoratos
,
T.
,
Savvidis
,
D.
,
Anagnostopoulos
,
K.
,
Luz
,
R.
,
Rexeis
,
M.
, and
Hausberger
,
S.
,
2016
, “
An Experimental Evaluation of the Methodology Proposed for the Monitoring and Certification of CO2 Emissions From Heavy-Duty Vehicles in
,”
Europe. Energy
,
102
, pp.
354
364
.
41.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
, and
Agarwal
,
A. K.
,
2021
, “
Regulated, Unregulated, and Particulate Emissions From Biodiesel Blend Fueled Transportation Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
084501
.
42.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabhu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2021
, “
Multi-objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
.
43.
Agarwal
,
A. K.
, and
Agarwal
,
D.
,
2021
, “
Field-Testing of Biodiesel (B100) and Diesel-Fueled Vehicles: Part 2- Lubricating Oil Condition Monitoring
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042308
.
44.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
. .
45.
Yilmaz
,
N.
,
Vigil
,
F. M.
,
Benalil
,
K.
,
Davis
,
S. M.
, and
Calva
,
A.
,
2014
, “
Effect of Biodiesel-Butanol Fuel Blends on Emissions and Performance Characteristics of a Diesel Engine
,”
Fuel
,
135
, pp.
46
50
.
46.
Atmanli
,
A.
, and
Yilmaz
,
N.
,
2021
, “
Comparative Assessment of Different Diesel Engines Fueled With 1-Pentanol and Diesel Blends
,”
Environ. Prog. Sustainable Energy
, 40(5), pp.
13663
13663
.
47.
Atmanli
,
A.
, and
Yilmaz
,
N.
,
2020
, “
An Experimental Assessment on Semi-low Temperature Combustion Using Waste Oil Biodiesel/C3-C5 Alcohol Blends in a Diesel Engine
,”
Fuel
,
260
, pp.
116357
116357
.
48.
Santhosh
,
K.
,
Kumar
,
G. N.
, and
Sanjay
,
P. V.
,
2020
, “
Experimental Analysis of Performance and Emission Characteristics of CRDI Diesel Engine Fueled With 1-Pentanol/Diesel Blends With EGR Technique
,”
Fuel
,
267
, pp.
117187
117187
.
49.
Drews
,
A.
,
2008
, “Standard Test Method for Calculated Cetane Index by Four Variable Equation,”
Man Hydrocarb Anal
,
A.
Drews
, ed.,
American Society for Testing and Materials
,
West Conshohocken, PA
, 6th ed., vol. 720.
50.
Atmanli
,
A.
,
Ileri
,
E.
,
Yuksel
,
B.
, and
Yilmaz
,
N.
,
2015
, “
Extensive Analyses of Diesel-Vegetable oil-n-Butanol Ternary Blends in a Diesel Engine
,”
Appl. Energy
,
145
, pp.
155
162
.
51.
Ramachander
,
J.
, and
Gugulothu
,
S. K.
,
2022
, “
Performance, Combustion and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
52.
Jatoth
,
R.
,
Gugulothu
,
S. K.
, and
Sastry
,
G. R.
,
2021
, “
Experimental Study of Using Biodiesel and Low Cetane Alcohol as the Pilot Fuel on the Performance and Emission Trade-off Study in the Diesel/Compressed Natural Gas Dual Fuel Combustion Mode
,”
Energy
,
225
, p.
120218
.
You do not currently have access to this content.