Abstract
In order to predict the functional performance of thermal-functional-designed clothing, the computer simulation method is adopted to investigate the thermoregulation of a clothed human. The primary aim of this study is to develop a computational model which can simulate the thermal physiological indicators and pumping effect simultaneously, while the previous models can only simulate the human thermal physiological performance or clothing pumping effect particularly. The secondary aim is to compare the simulation results predicted by the optimized model, either considering the pumping effect or not, with the results in a physiological experiment conducted by human participants in terms of different thermal responses, including core temperatures and mean skin temperature. A computational model was established to predict the thermal performance of a clothed human by considering the clothing pumping effect in the human-clothing-environment (HCE) system. In addition, the validation of the developed computational model has been investigated by comparing the predicted results of simulation (with or without pumping effect) with the experimental results on human participants, which demonstrates that the clothing pumping effect must be considered during the simulation process due to its vital influence on thermoregulation of a live clothed human. The results from the simulation and the human experiment showed that the pumping effect could dissipate the heat from the body to outside environment, affected the skin temperature, and consequently delayed the increasing of core temperature, especially during the running process.