Abstract

In order to predict the functional performance of thermal-functional-designed clothing, the computer simulation method is adopted to investigate the thermoregulation of a clothed human. The primary aim of this study is to develop a computational model which can simulate the thermal physiological indicators and pumping effect simultaneously, while the previous models can only simulate the human thermal physiological performance or clothing pumping effect particularly. The secondary aim is to compare the simulation results predicted by the optimized model, either considering the pumping effect or not, with the results in a physiological experiment conducted by human participants in terms of different thermal responses, including core temperatures and mean skin temperature. A computational model was established to predict the thermal performance of a clothed human by considering the clothing pumping effect in the human-clothing-environment (HCE) system. In addition, the validation of the developed computational model has been investigated by comparing the predicted results of simulation (with or without pumping effect) with the experimental results on human participants, which demonstrates that the clothing pumping effect must be considered during the simulation process due to its vital influence on thermoregulation of a live clothed human. The results from the simulation and the human experiment showed that the pumping effect could dissipate the heat from the body to outside environment, affected the skin temperature, and consequently delayed the increasing of core temperature, especially during the running process.

References

1.
Jiao
,
J.
,
Li
,
Y.
,
Yao
,
L.
,
Chen
,
Y.
,
Guo
,
Y.
,
Wong
,
S.
,
Ng
,
F.
, and
Hu
,
J.
,
2017
, “
Effects of Body-Mapping-Designed Clothing on Heat Stress and Running Performance in a Hot Environment
,”
Ergonomics
,
60
(
10
), pp.
1435
1444
.
2.
Ji
,
W.
,
Cao
,
B.
, and
Zhu
,
Y.
,
2019
, “
A Physiological Chamber Experiment to Explore Human Thermal Adaption on the Seasonal Scale
,”
IOP Conference Series Materials Science and Engineering
,
Bari, Italy
,
Sept. 5–7
,
609
(
4
), p.
042013
.
3.
Guan
,
M.
,
Annaheim
,
S.
,
Camenzind
,
M.
,
Li
,
J.
,
Mandal
,
S.
,
Psikuta
,
A.
, and
Rossi
,
R.
,
2019
, “
Moisture Transfer of the Clothing–Human Body System During Continuous Sweating Under Radiant Heat
,”
Text. Res. J.
,
89
(
21–22
), pp.
4537
4553
.
4.
Psikuta
,
A.
,
Allegrini
,
J.
,
Koelblen
,
B.
,
Bogdan
,
A.
,
Annaheim
,
S.
,
Martinez
,
N.
,
Derome
,
D.
,
Carmeliet
,
J.
, and
Rene
,
M.
,
2017
, “
Thermal Manikins Controlled by Human Thermoregulation Models for Energy Efficiency and Thermal Comfort Research—A Review
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
1315
1330
.
5.
Liang
,
Y.
,
Nan
,
J.
,
Wang
,
R. M.
,
Jiao.
,
J.
, and
Xu
,
Q.
,
2019
, “
An Improved Human Physiological Simulation Model for Healthcare Applications
,”
Int. J. Embed. Syst.
,
11
(
3
), p.
251
.
6.
Jia
,
N.
,
Huang
,
Y.
,
Li
,
J.
,
An
,
H.
,
Jia
,
X.
, and
Wang
,
R.
,
2019
, “
Parallel Simulation Model for Heat and Moisture Transfer of Clothed Human Body
,”
J. Supercomput.
,
75
(
8
), pp.
4731
4749
.
7.
Yi
,
L.
,
Mao
,
A.
,
Wang
,
R.
,
Lou
,
X.
,
Wang
,
Z.
,
Hou
,
W.
,
Zhou
,
L.
, and
Lin
,
Y.
,
2006
, “
P-Smart—A Virtual System for Clothing Thermal Functional Design
,”
Comput. Aided Des.
,
38
(
7
), pp.
726
739
.
8.
Mao
,
A.
,
Yi
,
L.
,
Luo
,
X.
, and
Wang
,
S.
,
2008
, “
A CAD System for Multi-Style Thermal Functional Design of Clothing
,”
Comput. Aided Des.
,
40
(
9
), pp.
916
930
.
9.
Teng
,
Y.
,
Wang
,
R.
,
Li
,
Y.
,
Luo
,
X.
,
Li
,
J.
,
Guo
,
Y.
,
Mao
,
A.
, and
Jiao
,
J.
,
2011
, “
M-Smart: An Improved Multi-Style Engineering Design CAD System for Clothing Thermal Functions
,”
J. Fiber Bioeng. Inform.
,
4
(
1
), pp.
71
82
.
10.
Mao
,
A.
,
Luo
,
J.
,
Li
,
Y.
,
Luo
,
X.
, and
Wang
,
R.
,
2011
, “
A Multi-Disciplinary Strategy for Computer-Aided Clothing Thermal Engineering Design
,”
Comput. Aided Des.
,
43
(
12
), pp.
1854
1869
.
11.
Gagge
,
A. P.
,
Stolwijk
,
J. A. J.
, and
Nishi
,
Y.
,
1971
, “
An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response
,”
ASHRAE Trans.
,
77
(
1
), pp.
21
36
.
12.
Gagge
,
A. P.
,
Fobelets
,
A. P.
, and
Berglund
,
L. G.
,
1986
, “
A Standard Predictive Index of Human Response to the Thermal Environment
,”
ASHRAE Trans.
,
92
(
2
), pp.
270
290
.
13.
Stolwijk
,
J. A. J.
, and
Hardy
,
J. D.
,
1966
, “
Temperature Regulation in Man—A Theoretical Study
,”
Pfluegers Arch. Gesamte Physiol. Menschen Tiere
,
291
(
2
), pp.
129
162
.
14.
Stolwijk
,
J. A. J.
,
1971
, “
A Mathematical Model of Physiological Temperature Regulation
,”
Ph.D. thesis
,
Yale University School of Medicine
,
New Haven
.
15.
Stolwijk
,
J. A. J.
,
2010
, “
Mathematical Models of Thermal Regulation
,”
Ann. N. Y. Acad. Sci.
,
335
(
1
), pp.
98
106
.
16.
Stolwijk
,
J. A. J.
, and
Hardy
,
J. D.
,
1966
, “
Partitional Calorimetric Studies of Responses of Man to Thermal Transients
,”
J. Appl. Physiol.
,
21
(
3
), pp.
967
977
.
17.
Cui
,
Y.
,
Gong
,
H.
,
Wang
,
D.
,
Li
,
D.
, and
Bai
,
H.
,
2018
, “
A Thermally Insulating Textile Inspired by Polar Bear Hair
,”
Adv. Mater.
,
30
(
14
), pp.
1
8
. .
18.
Oglakcioglu
,
N.
, and
Marmarali
,
A.
,
2007
, “
Thermal Comfort Properties of Some Knitted Structures
,”
Fibres Text. East. Eur.
,
15
(
5
), pp.
94
96
.
19.
Atasağun
,
H. G.
,
Okur
,
A.
,
Psikuta
,
A.
,
Rossi
,
R. M.
, and
Annaheim
,
S.
,
2019
, “
The Effect of Garment Combinations on Thermal Comfort of Office Clothing
,”
Text. Res. J.
,
89
(
21
), pp.
1
13
.
20.
Psikuta
,
A.
,
Mert
,
E.
,
Annaheim
,
S.
, and
Rossi
,
R. M.
,
2018
, “
Local Air Gap Thickness and Contact Area Models for Realistic Simulation of Human Thermo-Physiological Response
,”
Int. J. Biometeorol.
,
62
(
7
), pp.
1121
1134
.
21.
Kang
,
Z.
,
Shou
,
D.
, and
Fan
,
J.
,
2020
, “
Numerical Modeling of Body Heat Dissipation Through Static and Dynamic Clothing Air Gaps
,”
Int. J. Heat Mass Transfer
,
157
, p.
119833
.
22.
Fang
,
E.
,
Wu
,
X.
,
Yu
,
Y.
, and
Xiu
,
J.
,
2017
, “
Numerical Modeling of the Thermoelectric Cooler With a Complementary Equation for Heat Circulation in Air Gaps
,”
Open Phys.
,
15
(
1
), pp.
27
34
.
23.
Mert
,
E.
,
Psikuta
,
A.
,
Bueno
,
M. A.
, and
Rossi
,
R. M.
,
2017
, “
The Effect of Body Postures on the Distribution of Air Gap Thickness and Contact Area
,”
Int. J. Biometeorol.
,
61
(
2
), pp.
1
13
.
24.
Wang
,
S.
,
Wang
,
X.
, and
Wang
,
Y.
,
2019
, “
Effects of Clothing Ease and Body Postures on the Air Gap and Clothing Coverage
,”
Int. J. Cloth. Sci. Technol.
,
31
(
4
), pp.
578
594
. .
25.
Yamasaki
,
K.
,
Toriyama
,
N.
,
Nagakura
,
Y.
, and
Maeda
,
A.
,
2017
, “
The Influence of Chimney Effect and Pumping Effect on the Airflow in Clothing
,”
Jpn. J. Physiol. Anthropol.
,
22
(
3
), pp.
121
128
.
26.
Ghali
,
K.
,
Ghaddar
,
N.
, and
Jones
,
B.
,
2002
, “
Modeling of Heat and Moisture Transport by Periodic Ventilation of Thin Cotton Fibrous Media
,”
Int. J. Heat Mass Transf.
,
45
(
18
), pp.
3703
3714
.
27.
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2016
, “
Numerical Modeling of Heat Transfer and Fluid Motion in Air Gap Between Clothing and Human Body: Effect of Air Gap Orientation and Body Movement
,”
Int. J. Heat Mass Transf.
,
108
, pp.
271
291
.
28.
Nan
,
J.
,
Fan
,
Z.
, and
Wang
,
R.
,
2014
, “
Heat and Moisture Transfer Computation Model Based on Parallel Simulation in Clothed Human
,”
International Conference on Digital Home
,
Guangzhou, China
,
Nov. 28–30
, pp.
412
418
.
29.
Mao
,
A.
,
Luo
,
J.
, and
Li
,
Y.
,
2017
, “
Numerical Simulation of Thermal Behaviors of a Clothed Human Body With Evaluation of Indoor Solar Radiation
,”
Appl. Therm. Eng.
,
117
, pp.
629
643
.
30.
Angelova
,
R. A.
,
2015
, “
Numerical Simulation of the Thermoregulation of Clothed Human Body: Skin and Clothing Temperatures
,”
J. Braz. Soc. Mech. Sci. Eng.
,
37
(
1
), pp.
297
303
.
31.
Awais
,
M.
,
Krzywinski
,
S.
, and
Wendt
,
E.
,
2018
, “
Thermal Simulation of Human Body-Clothing-Environment System
,”
12th International Manikin and Modelling Meeting
,
St. Gallen, Switzerland
,
Aug. 29–31
.
32.
Mao
,
A.
,
Luo
,
J.
,
Li
,
G.
, and
Li
,
Y.
,
2016
, “
Numerical Simulation of Multiscale Heat and Moisture Transfer in the Thermal Smart Clothing System
,”
Appl. Math. Model.
,
40
(
4
), pp.
3342
3364
.
33.
Wang
,
Z.
,
Li
,
Y.
,
Zhu
,
Q. Y.
, and
Luo
,
X.
,
2003
, “
Radiation and Conduction Heat Transfer Coupled With Liquid Water Transfer, Moisture Sorption and Condensation in Porous Polymer Materials
,”
J. Appl. Polym. Sci.
,
89
(
10
), pp.
2780
2790
. .
34.
Chakraverty
,
S.
,
Mahato
,
N. R.
,
Karunakar
,
P.
, and
Rao
,
T. D.
,
2019
,
Advanced Numerical and Semi-Analytical Methods for Differential Equations
,
Wiley Online Library
,
New Jersey
.
35.
Ramanathan
,
N. L.
,
1964
, “
A New Weighting System for Mean Surface Temperature of the Human Body
,”
J. Appl. Physiol.
,
19
(
3
), pp.
531
533
.
36.
Jiao
,
J.
,
2013
, “
Effects of Clothing on Running Physiology and Performance in a Hot Condition
,”
Ph.D. dissertation
,
The Hong Kong Polytechnic University
,
Hong Kong
.
37.
ISO
,
2004
,
Ergonomics—Evaluation of Thermal Strain by Physiological Measurements
,
International Organization for Standardization
,
Switzerland
, pp.
1
21
.
You do not currently have access to this content.