Abstract

Building concentric tubes is one of biggest practical challenges in the construction of freeze-pipes of selective artificial ground freezing (S-AGF) applications for underground mines. In this study, the influence of tubes eccentricity on phase-front expansion (i.e., expansion of the frozen body) and energy consumption of S-AGF systems is analyzed. A 1 + 1D semi-conjugate model that solves two-phase transient energy conservation equation is derived based on the enthalpy method. The 1 + 1D model is first validated against experimental data and then verified with a fully conjugate model from our previous work. After that, the 1 + 1D model is extended to a field-scale of typical underground mines to examine the effect of freeze-pipe eccentricity. The results show that concentric freeze-pipes form the desired frozen ground volume 17% faster than eccentric freeze-pipes. Also, the geometrical profile of the phase-transition front of the frozen ground is found to be significantly influenced by the freeze-pipe eccentricity. Furthermore, in the passive zone, where S-AGF coolants are isolated from the ground to reduce energy consumption, freeze-pipe eccentricity can increase the coolant heat gain by 20%. This percentage can increase up to 200% if radiation heat transfer is minimized.

References

1.
Alzoubi
,
M. A.
,
Xu
,
M.
,
Hassani
,
F. P.
,
Poncet
,
S.
, and
Sasmito
,
A. P.
,
2020
, “
Artificial Ground Freezing: A Review of Thermal and Hydraulic Aspects
,”
Tunn. Undergr. Space Technol.
,
104
, p.
103534
.
2.
Tang
,
Y.
,
Xiao
,
S.
, and
Zhou
,
J.
,
2019
, “
Deformation Prediction and Deformation Characteristics of Multilayers of Mucky Clay Under Artificial Freezing Condition
,”
KSCE J. Civ. Eng.
,
23
(
3
), pp.
1064
1076
.
3.
Newman
,
G.
,
Newman
,
L.
,
Chapman
,
D.
, and
Harbicht
,
T.
,
2011
, “
Artificial Ground Freezing: An Environmental Best Practice at Cameco’s Uranium Mining Operations in Northern Saskatchewan, Canada
,”
Proceedings of 11th International Mine Water Association Congress Mine Water Managing the Challenges
,
Sept. 4–11.
4.
Alzoubi
,
M. A.
,
Madiseh
,
A.
,
Hassani
,
F. P.
, and
Sasmito
,
A. P.
,
2019
, “
Heat Transfer Analysis in Artificial Ground Freezing Under High Seepage: Validation and Heatlines Visualization
,”
Int. J. Therm. Sci.
,
139
, pp.
232
245
.
5.
Alzoubi
,
M. A.
,
Zueter
,
A.
,
Nie-Rouquette
,
A.
, and
Sasmito
,
A. P.
,
2019
, “
Freezing on Demand: A New Concept for Mine Safety and Energy Savings in Wet Underground Mines
,”
Int. J. Min. Sci. Technol.
,
29
(
4
), pp.
621
627
.
6.
Alzoubi
,
M. A.
,
Nie-Rouquette
,
A.
,
Ghoreishi-Madiseh
,
S. A.
,
Hassani
,
F. P.
, and
Sasmito
,
A. P.
,
2019
, “
On the Concept of the Freezing-on-Demand (FoD) in Artificial Ground Freezing for Long-Term Applications
,”
Int. J. Heat Mass Transfer
,
143
, p.
118557
.
7.
Dong
,
X.
,
Liu
,
H.
, and
Chen
,
Z.
,
2017
, “
Mathematical Modeling of Heat Transfer and Pressure Drops in the Single-and Dual-Pipe Horizontal Wells
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p. 011016.
8.
Dash
,
S.
, and
Sahoo
,
S.
,
2019
, “
A Study on Natural Convection in a Cold Square Enclosure With Two Vertical Eccentric Square Heat Sources Using the IB–LBM Scheme
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p. 051013.
9.
Haidar
,
C.
,
Boutarfa
,
R.
,
Sennoune
,
M.
, and
Harmand
,
S.
,
2020
, “
Numerical and Experimental Study of Flow and Convective Heat Transfer on a Rotor of a Discoidal Machine With Eccentric Impinging Jet
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p. 021012.
10.
Neto
,
J. V.
,
Martins
,
A.
,
Neto
,
A. S.
,
Ataíde
,
C.
, and
Barrozo
,
M.
,
2011
, “
CFD Applied to Turbulent Flows in Concentric and Eccentric Annuli With Inner Shaft Rotation
,”
Can J Chem Eng.
,
89
(
4
), pp.
636
646
.
11.
Chang
,
K. D.
, and
Lacy
,
H. S.
,
2008
, “
Artificial Ground Freezing in Geotechnical Engineering
,”
International Conference on Case Histories in Geotechnical Engineering
,
Aug. 11–16
.
12.
Haciislamoglu
,
M.
, and
Langlinais
,
J.
,
1991
, “
Effect of Pipe Eccentricity on Surge Pressures
,”
ASME J. Energy Resour. Technol.
,
113
(
3
), pp.
157
160
.
13.
Ali
,
M. A.
,
El-Maghlany
,
W. M.
,
Eldrainy
,
Y. A.
, and
Attia
,
A.
,
2018
, “
Heat Transfer Enhancement of Double Pipe Heat Exchanger Using Rotating of Variable Eccentricity Inner Pipe
,”
Alexandria Eng. J.
,
57
(
4
), pp.
3709
3725
.
14.
Kadivar
,
M.
,
Moghimi
,
M.
,
Sapin
,
P.
, and
Markides
,
C.
,
2019
, “
Annulus Eccentricity Optimisation of a Phase-Change Material (pcm) Horizontal Double-Pipe Thermal Energy Store
,”
J. Energy Storage
,
26
, p.
101030
.
15.
Dawood
,
H.
,
Mohammed
,
H.
,
Sidik
,
N. A. C.
,
Munisamy
,
K.
, and
Wahid
,
M.
,
2015
, “
Forced, Natural and Mixed-Convection Heat Transfer and Fluid Flow in Annulus: A Review
,”
Int. Commun. Heat Mass Transfer
,
62
, pp.
45
57
.
16.
Hosseini
,
R.
,
Ramezani
,
M.
, and
Mazaheri
,
M.
,
2009
, “
Experimental Study of Turbulent Forced Convection in Vertical Eccentric Annulus
,”
Energy Convers. Manage.
,
50
(
9
), pp.
2266
2274
.
17.
Trombetta
,
M. L.
,
1971
, “
Laminar Forced Convection in Eccentric Annuli
,”
Int. J. Heat Mass Transfer
,
14
(
8
), pp.
1161
1173
.
18.
Liu
,
Y.
,
Li
,
K.-Q.
,
Li
,
D.-Q.
,
Tang
,
X.-S.
, and
Gu
,
S.-X.
,
2021
, “
Coupled Thermal Hydraulic Modeling of Artificial Ground Freezing With Uncertainties in Pipe Inclination and Thermal Conductivity
,”
Acta Geotechnica
, pp.
1
18
.
19.
Ratzel
,
A.
,
Hickox
,
C.
, and
Gartling
,
D.
,
1979
, “
Techniques for Reducing Thermal Conduction and Natural Convection Heat Losses in Annular Receiver Geometries
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
1
), pp.
108
113
.
20.
Hachicha
,
A. A.
,
Rodríguez
,
I.
, and
Ghenai
,
C.
,
2018
, “
Thermo-hydraulic Analysis and Numerical Simulation of a Parabolic Trough Solar Collector for Direct Steam Generation
,”
Appl. Energy
,
214
, pp.
152
165
.
21.
Vitel
,
M.
,
Rouabhi
,
A.
,
Tijani
,
M.
, and
Guerin
,
F.
,
2016
, “
Thermo-hydraulic Modeling of Artificial Ground Freezing: Application to an Underground Mine in Fractured Sandstone
,”
Comput. Geotech.
,
75
, pp.
80
92
.
22.
Tounsi
,
H.
,
Rouabhi
,
A.
, and
Jahangir
,
E.
,
2020
, “
Thermo-hydro-mechanical Modeling of Artificial Ground Freezing Taking Into Account the Salinity of the Saturating Fluid
,”
Comput. Geotech.
,
119
, p.
103382
.
23.
Wang
,
B.
,
Rong
,
C.
,
Cheng
,
H.
,
Yao
,
Z.
, and
Cai
,
H.
,
2020
, “
Research and Application of the Local Differential Freezing Technology in Deep Alluvium
,”
Adv. Civ. Eng.
,
2020
.
24.
Zueter
,
A.
,
Nie-Rouquette
,
A.
,
Alzoubi
,
M. A.
, and
Sasmito
,
A. P.
,
2020
, “
Thermal and Hydraulic Analysis of Selective Artificial Ground Freezing Using Air Insulation: Experiment and Modeling
,”
Comput. Geotech.
,
120
, p.
103416
.
25.
Zueter
,
A. F.
,
Xu
,
M.
,
Alzoubi
,
M. A.
, and
Sasmito
,
A. P.
,
2021
, “
Development of Conjugate Reduced-Order Models for Selective Artificial Ground Freezing: Thermal and Computational Analysis
,”
Appl. Therm. Eng.
,
190
, p.
116782
.
26.
Alzoubi
,
M. A.
,
Nie-Rouquette
,
A.
, and
Sasmito
,
A. P.
,
2018
, “
Conjugate Heat Transfer in Artificial Ground Freezing Using Enthalpy-Porosity Method: Experiments and Model Validation
,”
Int. J. Heat Mass Transfer
,
126
, pp.
740
752
.
27.
Kaviany
,
M.
,
2012
,
Principles of Heat Transfer in Porous Media
,
Springer Science & Business Media
,
New York
.
28.
Cengel
,
Y. A.
,
Klein
,
S.
, and
Beckman
,
W.
,
1998
,
Heat Transfer: a Practical Approach
, Vol.
141
,
McGraw-Hill New York
,
New York
.
29.
Sladen
,
W. E.
,
Morse
,
P. D.
, and
Wolfe
,
S. A.
,
2018
, Geological Survey of Canada Open File 8274. Technical Report, Natural Resources Canada.
30.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
John Wiley & Sons
,
New Jersey
.
31.
Shah
,
R.
, and
London
,
A.
,
1978
, “Chapter xii—Concentric Annular Ducts,”
Laminar Flow Forced Convection in Ducts
,
R
Shah
, and
A
London
, eds.,
Academic Press
,
New York
, pp.
284
321
.
32.
Ebadian
,
M.
, and
Dong
,
Z.
,
1998
, “
Forced Convection, Internal Flow in Ducts
,”
Handbook of Heat Transfer
, Vol.
5
,
McGraw-Hill
,
New York
.
33.
Xu
,
M.
,
Akhtar
,
S.
,
Zueter
,
A. F.
,
Auger
,
V.
,
Alzoubi
,
M. A.
, and
Sasmito
,
A. P.
,
2020
, “
Development of Analytical Solution for a two-Phase Stefan Problem in Artificial Ground Freezing Using Singular Perturbation Theory
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(12), p.
122401
.
34.
Xu
,
M.
,
Akhtar
,
S.
,
Zueter
,
A. F.
,
Alzoubi
,
M. A.
,
Sushama
,
L.
, and
Sasmito
,
A. P.
,
2021
, “
Asymptotic Analysis of a Two-Phase Stefan Problem in Annulus: Application to Outward Solidification in Phase Change Materials
,”
Appl. Math. Comput.
,
408
, p.
126343
.
35.
Zhang
,
S.
,
Yue
,
Z.
,
Sun
,
T.
,
Zhang
,
J.
, and
Huang
,
B.
,
2021
, “
Analytical Determination of the Soil Temperature Distribution and Freezing Front Position for Linear Arrangement of Freezing Pipes Using the Undetermined Coefficient Method
,”
Cold Reg. Sci. Technol.
,
185
, p.
103253
.
36.
Zueter
,
A. F.
,
Newman
,
G.
, and
Sasmito
,
A. P.
,
2021
, “
Numerical Study on the Cooling Characteristics of Hybrid Thermosyphons: Case Study of the Giant Mine, Canada
,”
Cold Reg. Sci. Technol.
,
189
, p.
103313
.
37.
Vasilyeva
,
M.
,
Ammosov
,
D.
, and
Vasilev
,
V.
,
2021
, “
Finite Element Simulation of Thermo-mechanical Model With Phase Change
,”
Comput.
,
9
(
1
), p.
5
.
38.
Pei
,
W.
,
Zhang
,
M.
,
Lai
,
Y.
,
Yan
,
Z.
, and
Li
,
S.
,
2019
, “
Evaluation of the Ground Heat Control Capacity of a Novel Air-l-Shaped Tpct-Ground (Altg) Cooling System in Cold Regions
,”
Energy
,
179
, pp.
655
668
.
39.
Faden
,
M.
,
Konig-Haagen
,
A.
, and
Bruggemann
,
D.
,
2019
, “
An Optimum Enthalpy Approach for Melting and Solidification With Volume Change
,”
Energies
,
12
(
5
), p.
868
.
40.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1992
, “
A General Enthalpy Method for Modeling Solidification Processes
,”
Metall. Trans. B
,
23
(
5
), pp.
651
664
.
41.
Government of Canada
,
n.d.
, Historical data. https://climate.weather.gc.ca/
You do not currently have access to this content.