Abstract

Thermal management systems (TMSs) working for electronics packages under harsh environments like intense thermal radiation are challenging due to external thermal interactions. Thermal insulation protection for TMS is very critical in these harsh conditions. An experimental setup was developed to analyze the effect of insulation protection against thermal irradiation over a pumped liquid-cooling active thermal management system (ATMS) with varying heat dissipation rate (0–4.2 kW/m2), thermal irradiation (0.85–3.80 kW/m2), and coolant temperature (15–25 °C). Three configurations of ATMS are considered in the experimental study: ATMS without thermal insulation protection, ATMSs integrated with Cellulose Fibre Insulation (CFI), and Vacuum Insulation Panel (VIP). The effect of insulation on each parameter in all three ATMS configurations over the temperature of the electronics component, cooling load, and nature of heat flow in ATMS was analyzed. VIP outperformed CFI on achieving a significant reduction in the temperature of electronics systems (35.67%) and cooling load (45.64%) experienced by the ATMS. VIP effectively reduced the impact of temperature and cooling load change in ATMS against change in thermal irradiation. The study concluded that thermal insulation protection was most effective at high thermal irradiation and low heat dissipation rate. Heat Flow Direction Index (HFDI) concept was developed to find the nature of heat transfer direction in ATMS without temperature distribution trend. Heat generation rate and irradiation possess significant influence over the nature of heat flow direction.

References

1.
Ren
,
Q.
,
Guo
,
P.
, and
Zhu
,
J.
,
2020
, “
Thermal Management of Electronic Devices Using Pin-Fin Based Cascade Microencapsulated PCM/Expanded Graphite Composite
,”
Int. J. Heat Mass Transf.
,
149
, pp.
1
16
.
2.
Anandan
,
S. S.
, and
Ramalingam
,
V.
,
2008
, “
Thermal Management of Electronics: A Review of Literature
,”
Therm. Sci.
,
12
(
2
), pp.
5
25
.
3.
Marshall
,
G. J.
,
Mahony
,
C. P.
,
Rhodes
,
M. J.
,
Daniewicz
,
S. R.
,
Tsolas
,
N.
, and
Thompson
,
S. M.
,
2019
, “
Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview
,”
Engineering
,
5
(
5
), pp.
954
969
.
4.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J. A.
, and
Gektin
,
V.
,
2017
, “
Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions
,”
IEEE Trans. Components, Packag. Manuf. Technol.
,
7
(
8
), pp.
1191
1205
.
5.
Parsons
,
K. K.
, and
Mackin
,
T. J.
,
2017
, “
Design and Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs on an Unmanned Ground Vehicle
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011012
.
6.
Warzoha
,
R.
, and
Fleischer
,
A. S.
,
2011
, “
Thermal Management of High Density Power Electronics Modules Using Dielectric Mineral Oil With Applications in the Electric Utility Field for Smart Grid Protection
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041005
.
7.
Hu
,
H.
,
Zhang
,
J.
,
Du
,
X.
, and
Yang
,
L.
,
2011
, “
Analysis of Liquid-Cooled Heat Sink Used for Power Electronics Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021001
.
8.
Cai
,
S. Q.
,
Bhunia
,
A.
, and
Asfia
,
J. F.
,
2017
, “
A Passive and Remote Heat Transfer Solution for Avionics Thermal Management
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021009
.
9.
Xi
,
W.
,
Liu
,
Y.
,
Zhao
,
W.
,
Hu
,
R.
, and
Luo
,
X.
,
2021
, “
Colored Radiative Cooling: How to Balance Color Display and Radiative Cooling Performance
,”
Int. J. Therm. Sci.
,
170
, p.
107172
.
10.
Song
,
J.
,
Cheng
,
Q.
,
Zhang
,
B.
,
Lu
,
L.
,
Zhou
,
X.
,
Luo
,
Z.
, and
Hu
,
R.
,
2021
, “
Many-Body Near-Field Radiative Heat Transfer: Methods, Functionalities and Applications
,”
Reports Prog. Phys.
,
84
(
3
), p.
036501
.
11.
Xi
,
W.
,
Liu
,
Y.
,
Song
,
J.
,
Hu
,
R.
, and
Luo
,
X.
,
2021
, “
High-Throughput Screening of a High-Q Mid-Infrared Tamm Emitter by Material Informatics
,”
Opt. Lett.
,
46
(
4
), pp.
888
891
.
12.
Hu
,
R.
,
Song
,
J.
,
Liu
,
Y.
,
Xi
,
W.
,
Zhao
,
Y.
,
Yu
,
X.
,
Cheng
,
Q.
,
Tao
,
G.
, and
Luo
,
X.
,
2020
, “
Machine Learning-Optimized Tamm Emitter for High-Performance Thermophotovoltaic System With Detailed Balance Analysis
,”
Nano Energy
,
72
, p.
104687
.
13.
Hu
,
R.
,
Zhou
,
S.
,
Li
,
Y.
,
Lei
,
D.-Y.
,
Luo
,
X.
, and
Qiu
,
C.-W.
,
2018
, “
Illusion Thermotics
,”
Adv. Mater.
,
30
(
22
), p.
1707237
.
14.
Hu
,
R.
,
Huang
,
S.
,
Wang
,
M.
,
Luo
,
X.
,
Shiomi
,
J.
, and
Qiu
,
C.
,
2019
, “
Encrypted Thermal Printing With Regionalization Transformation
,”
Adv. Mater.
,
31
(
25
), p.
1807849
.
15.
Al-Rashed
,
M. H.
,
Dzido
,
G.
,
Korpyś
,
M.
,
Smołka
,
J.
, and
Wójcik
,
J.
,
2016
, “
Investigation on the CPU Nanofluid Cooling
,”
Microelectron. Reliab.
,
63
, pp.
159
165
.
16.
Siricharoenpanich
,
A.
,
Wiriyasart
,
S.
,
Srichat
,
A.
, and
Naphon
,
P.
,
2020
, “
Thermal Cooling System With Ag/Fe3O4 Nanofluids Mixture as Coolant for Electronic Devices Cooling
,”
Case Stud. Therm. Eng.
,
20
, p.
100641
.
17.
Selvaraj
,
V.
, and
Krishnan
,
H.
,
2020
, “
Synthesis of Graphene Encased Alumina and Its Application as Nanofluid for Cooling of Heat-Generating Electronic Devices
,”
Powder Technol.
,
363
, pp.
665
675
.
18.
Sohel Murshed
,
S. M.
, and
Nieto de Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
821
833
.
19.
Fahrner
,
W. R.
,
Job
,
R.
, and
Werner
,
M.
,
2001
, “
Sensors and Smart Electronics in Harsh Environment Applications
,”
Microsyst. Technol.
,
7
(
4
), pp.
138
144
.
20.
Werner
,
M. R.
, and
Fahrner
,
W. R.
,
2001
, “
Review on Materials, Microsensors, Systems, and Devices for High-Temperature and Harsh-Environment Applications
,”
IEEE Trans. Ind. Electron.
,
48
(
2
), pp.
249
257
.
21.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
, et al
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Components Packag. Technol.
,
31
(
4
), pp.
801
815
.
22.
Doi
,
T.
,
Ioan
,
D.
, and
Marinescu
,
S. K.
,
2012
,
Advances in CMP Polishing Technologies
, 1st ed.,
William Andrew Publishing
,
Norwich, NY
, pp.
297
304
.
23.
Shang
,
B.
,
Ma
,
Y.
,
Hu
,
R.
,
Yuan
,
C.
,
Hu
,
J.
, and
Luo
,
X.
,
2017
, “
Passive Thermal Management System for Downhole Electronics in Harsh Thermal Environments
,”
Appl. Therm. Eng.
,
118
, pp.
593
599
.
24.
Han
,
Y.
,
Luan
,
W.
,
Jiang
,
Y.
, and
Zhang
,
X.
,
2016
, “
Protection of Electronic Devices on Nuclear Rescue Robot: Passive Thermal Control
,”
Appl. Therm. Eng.
,
101
, pp.
224
230
.
25.
Peng
,
J.
,
Lan
,
W.
,
Wang
,
Y.
,
Ma
,
Y.
, and
Luo
,
X.
,
2020
, “
Thermal Management of the High-Power Electronics in High Temperature Downhole Environment
,”
Proceedings of the IEEE 22nd Electronics Packaging Technology Conference, EPTC 2020
,
Singapore
,
Dec. 2–4
, pp.
369
375
.
26.
Watson
,
J.
, and
Castro
,
G.
,
2015
, “
A Review of High-Temperature Electronics Technology and Applications
,”
J. Mater. Sci. Mater. Electron.
,
26
(
12
), pp.
9226
9235
.
27.
Wang
,
Y.
,
Gao
,
X.
,
Chen
,
P.
,
Huang
,
Z.
,
Xu
,
T.
,
Fang
,
Y.
, and
Zhang
,
Z.
,
2016
, “
Preparation and Thermal Performance of Paraffin/Nano-SiO2 Nanocomposite for Passive Thermal Protection of Electronic Devices
,”
Appl. Therm. Eng.
,
96
, pp.
699
707
.
28.
Huang
,
J.
,
Sun
,
W.
,
Zhang
,
Z.
,
Ling
,
Z.
, and
Fang
,
X.
,
2021
, “
Thermal Protection of Electronic Devices Based on Thermochemical Energy Storage
,”
Appl. Therm. Eng.
,
186
, p.
116507
.
29.
Raj
,
C. R.
,
Suresh
,
S.
,
Singh
,
V. K.
,
Bhavsar
,
R. R. C. M. V.
,
Vasudevan
,
S.
, and
Archita
,
V.
,
2021
, “
Experimental Investigation on Nanoalloy Enhanced Layered Perovskite PCM Tamped in a Tapered Triangular Heat Sink for Satellite Avionics Thermal Management
,”
Int. J. Therm. Sci.
,
167
, p.
107007
.
30.
Ma
,
Y.
,
Shang
,
B.
,
Hu
,
R.
, and
Luo
,
X.
,
2016
, “
Thermal Management of Downhole Electronics Cooling in Oil & Gas Well Logging at High Temperature
,”
Proceedings of the 17th International Conference on Electronic Packaging Technology (ICEPT)
, 7th ed.,
IEEE
, pp.
623
627
.
31.
Sevinchan
,
E.
,
Dincer
,
I.
, and
Lang
,
H.
,
2019
, “
Investigation of Heat Transfer Performance of Various Insulating Materials for Robots
,”
Int. J. Heat Mass Transf.
,
131
, pp.
907
919
.
32.
Wankhede
,
M.
,
Khaire
,
V.
,
Goswami
,
A.
, and
Mahajan
,
S. D.
,
2007
, “
Evaluation of Cooling Solutions for Outdoor Electronics
,”
Proceedings of 9th Electronics Packaging Technology Conference. EPTC
,
Singapore
,
Dec. 10–12
, pp.
858
863
.
33.
Volk
,
T. G.
,
1990
, “
Thermal Requirements for Electronic Equipment Cabinets Exposed to Outdoor Environments
,”
12th International Conference on Telecommunications Energy
,
Orlando, FL
,
Oct. 22–25
, pp.
571
576
.
34.
Sevinchan
,
E.
,
Dincer
,
I.
, and
Lang
,
H.
,
2018
, “
A Review on Thermal Management Methods for Robots
,”
Appl. Therm. Eng.
,
140
, pp.
799
813
.
35.
Fricke
,
J.
,
Schwab
,
H.
, and
Heinemann
,
U.
,
2006
, “
Vacuum Insulation Panels—Exciting Thermal Properties and Most Challenging Applications
,”
Int. J. Thermophys.
,
27
(
4
), pp.
1123
1139
.
36.
Midhun
,
V. C.
,
Suresh
,
S.
,
Praveen
,
B.
,
Neethikumar
,
R.
, and
Rajesh
,
K. S.
,
2021
, “
Preparation, Characterisation and Thermal Property Study of Micro/Nanocellulose Crystals for Vacuum Insulation Panel Application
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101045
.
37.
Zhuang
,
J.
,
Ghaffar
,
S. H.
,
Fan
,
M.
, and
Corker
,
J.
,
2017
, “
Restructure of Expanded Cork With Fumed Silica as Novel Core Materials for Vacuum Insulation Panels
,”
Compos. Part B Eng.
,
127
, pp.
215
221
.
38.
Midhun
,
V. C.
,
Suresh
,
S.
,
Praveen
,
B.
, and
Shiju
,
2020
, “
Experimental Study on Phase Transition Behaviour of Shape Stable Phase Change Material for Application in Vacuum Insulation Panel
,”
J. Energy Storage
,
32
.
39.
Gaedtke
,
M.
,
Wachter
,
S.
,
Kunkel
,
S.
,
Sonnick
,
S.
,
Rädle
,
M.
,
Nirschl
,
H.
, and
Krause
,
M. J.
,
2020
, “
Numerical Study on the Application of Vacuum Insulation Panels and a Latent Heat Storage for Refrigerated Vehicles With a Large Eddy Lattice Boltzmann Method
,”
Heat Mass Transf. und Stoffuebertragung
,
56
(
4
), pp.
1189
1201
.
40.
Verma
,
S.
, and
Singh
,
H.
,
2020
, “
Vacuum Insulation Panels for Refrigerators
,”
Int. J. Refrig.
,
112
, pp.
215
228
.
41.
Alam
,
M.
,
Singh
,
H.
,
Brunner
,
S.
, and
Naziris
,
C.
,
2014
, “
Experimental Characterisation and Evaluation of the Thermo-Physical Properties of Expanded Perlite—Fumed Silica Composite for Effective Vacuum Insulation Panel (VIP) Core
,”
Energy Build.
,
69
, pp.
442
450
.
42.
Pullins
,
C. A.
, and
Diller
,
T. E.
,
2012
, “
Direct Measurement of Hot-Wall Heat Flux
,”
J. Thermophys. Heat Transf.
,
26
(
3
), pp.
430
438
.
43.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
, pp.
1021
1022
.
44.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
45.
ASTM D7984-21
,
2021
, “
Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument
,”
ASTM International
,
West Conshohocken, PA
, pp.
1
5
.
46.
Harris
,
A.
,
Kazachenko
,
S.
,
Bateman
,
R.
,
Nickerson
,
J.
, and
Emanuel
,
M.
,
2014
, “
Measuring the Thermal Conductivity of Heat Transfer Fluids via the Modified Transient Plane Source (MTPS)
,”
J. Therm. Anal. Calorim.
,
116
(
3
), pp.
1309
1314
.
47.
ASTM C518-15
,
2015
, “
Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
,” ASTM International, West Conshohocken, PA.
48.
Barnes
,
B. T.
, and
Forsythe
,
W. E.
,
1936
, “
Spectral Radiant Intensities of Some Tungsten Filament Incandescent Lamps
,”
J. Opt. Soc. Am.
,
26
(
8
), p.
313
.
49.
Brogren
,
M.
,
Helgesson
,
A.
,
Karlsson
,
B.
,
Nilsson
,
J.
, and
Roos
,
A.
,
2004
, “
Optical Properties, Durability, and System Aspects of a New Aluminium-Polymer-Laminated Steel Reflector for Solar Concentrators
,”
Sol. Energy Mater. Sol. Cells
,
82
(
3
), pp.
387
412
.
50.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
,
2002
, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transf.
,
45
(
16
), pp.
3275
3286
.
You do not currently have access to this content.