Abstract

In this study, a systematic optimization method for the thermal management problem of a passenger vehicle was proposed. This article addressed the problem of the drive shaft sheath surface temperature exceeded allowable value. Initially, the causes and initial measures of the thermal problem were studied through computational fluid dynamics (CFD) simulation. The key measures and their parameters were determined through the Taguchi method and significance analysis. A prediction model between the parameters and optimization objective was built by the radial basis function neural network (RBFNN). The prediction model and particle swarm optimization (PSO) algorithm were combined to calculate the optimal solution, and the optimal solution was selected for simulation and experimental verification. Experiment results indicated that this method reduced the drive shaft sheath surface temperature promptly, and the decreasing amplitude was 22%, which was met the experimental requirements.

References

1.
Lan
,
K. T.
, and
Srinivasan
,
K.
,
2009
, “
Influences of Free Stream Conditions on Vehicle Thermal Management—An Analytical Study
,”
SAE World Congress & Exhibition
,
USA
,
SAE Technical Paper No. 2009-01-1152
.
2.
Yang
,
J.
,
Fan
,
M.
,
Ren
,
C.
, and
Feng
,
R.
,
2011
, “
Study on Thermal Management for the Engine Compartment of a Rear Engine Bus Based on STAR-CCM+
,”
2011 International Conference on Electric Information and Control Engineering
,
Wuhan, China
,
Apr. 15–17
, pp.
6184
6187
.
3.
Saab
,
S.
,
Hetet
,
J. F.
, and
Maiboom
,
A.
,
2013
, “
Impact of the Underhood Opening Area on the Drag Coefficient and the Thermal Performance of a Vehicle
,” SAE Technical Paper No. 2013-01-0869.
4.
Ou
,
J.
,
Li
,
L.
,
Cui
,
T.
, and
Chen
,
Z.
,
2014
, “
Application of Field Synergy Principle to Analysis of Flow Field in Underhood of LPG Bus
,”
Comput. Fluids
,
103
, pp.
186
192
.
5.
Yang
,
S.
,
Wang
,
D.
,
Dang
,
Y.
, and
Li
,
L.
,
2015
, “
Numerical Simulation and Optimization of the Underhood Fluid Field and Cooling Performance for Heavy Duty Commercial Vehicle Under Different Driving Conditions
,”
SAE Commercial Vehicle Congress
,
Rosemont, IL
,
No. 2015-01-2902
.
6.
Khaled
,
M.
,
Faraj
,
J.
,
Harika
,
E.
,
Harambat
,
F.
,
Castelain
,
C.
, and
Ramadan
,
M.
,
2018
, “
Impact of Underhood Leakage Zones on the Aerothermal Situation—Experimental Simulations and Physical Analysis
,”
Appl. Therm. Eng.
,
145
, pp.
507
515
.
7.
Zhang
,
C.
,
Uddin
,
M.
,
Robinson
,
A. C.
, and
Foster
,
L.
,
2018
, “
Full Vehicle CFD Investigations on the Influence of Front-End Configuration on Radiator Performance and Cooling Drag
,”
Appl. Therm. Eng.
,
130
, pp.
1328
1340
.
8.
Minovski
,
B.
,
Löfdahl
,
L.
,
Andrić
,
J.
, and
Gullberg
,
P.
,
2019
, “
A Coupled 1D–3D Numerical Method for Buoyancy-Driven Heat Transfer in a Generic Engine Bay
,”
Energies
,
12
(
21
), p.
4156
.
9.
Lee
,
J. S.
,
Seo
,
Y. M.
,
Jeong
,
C. H.
,
Kim
,
M. S.
,
Park
,
Y. G.
, and
Ha
,
M. Y.
,
2019
, “
Numerical Analysis and Design Optimization of Engine Room to Improve Cooling Performance for a Mid-Class Excavator
,”
J. Mech. Sci. Technol.
,
33
(
7
), pp.
3265
3275
.
10.
Öztürk
,
İ
,
Çetin
,
C.
, and
Yavuz
,
M. M.
,
2019
, “
Effect of Fan and Shroud Configurations on Underhood Flow Characteristics of an Agricultural Tractor
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
506
518
.
11.
Lu
,
P.
,
Gao
,
Q.
,
Lv
,
L.
,
Xue
,
X.
, and
Wang
,
Y.
,
2019
, “
Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission
,”
Energies
,
12
(
2
), p.
259
.
12.
Li
,
H.
,
Chang
,
Y. K.
, and
Shi
,
X. G.
,
2019
, “
The Influence of Automobile Intake Grille on Engine Compartment Thermal Management
,”
Small Int. Comb. Eng. Veh. Tech.
,
48
(
2
), pp.
37
39
.
13.
Yuan
,
R. Y.
,
Sivasankaran
,
S.
,
Dutta
,
N.
,
Jansen
,
W.
, and
Ebrahimi
,
K.
,
2019
, “
Numerical Investigation of Buoyancy-Driven Heat Transfer Within Engine Bay Environment During Thermal Soak
,”
Appl. Therm. Eng.
,
164
.
14.
GB/T 12542-2009, Thermal Balance Capacity On-road Test Method for Motor Vehicles, China National Standard
.
15.
Lin
,
W.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2012
, “
Performance Analysis of a Countercurrent Flow Heat Exchanger Placed on the Truck Compartment Roof
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
4
), p.
041004
.
16.
Afroz
,
F.
, and
Sharif
,
M. A. R.
,
2018
, “
Numerical Study of Turbulent Annular Impinging Jet Flow and Heat Transfer From a Flat Surface
,”
Appl. Therm. Eng.
,
138
, pp.
154
172
.
17.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Canada, CA
.
18.
Liu
,
G. L.
,
Zhao
,
L. P.
, and
Yang
,
Z. G.
,
2017
, “
Fundamental Problems on CFD Simulation of Convective Heat Transfer in Underhood
,”
Comput. Aided Eng.
,
26
(
1
), pp.
20
25
.
19.
Abou-Ziyan
,
H. Z.
,
Almesri
,
I. F.
,
Alrahmani
,
M. A.
, and
Almutairi
,
J. H.
,
2018
, “
Convective Heat Transfer Coefficients of Multifaceted Longitudinal and Transversal Bricks of Lattice Setting in Tunnel Kilns
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051014
.
20.
Shaheed
,
R.
,
Shaheed
,
R.
,
Mohammadian
,
A.
,
Mohammadian
,
A.
,
Kheirkhah Gildeh
,
H.
, and
Kheirkhah Gildeh
,
H.
,
2019
, “
A Comparison of Standard k–ε and Realizable k–ε Turbulence Models in Curved and Confluent Channels
,”
Environ. Fluid Mech.
,
19
(
2
), pp.
543
568
.
21.
Wang
,
W. P.
,
Guo
,
J. X.
,
Zhang
,
S. W.
,
Yang
,
J.
,
Ding
,
X. T.
, and
Zhan
,
X. H.
,
2014
, “
Numerical Study on Hydrodynamic Characteristics of Plate-Fin Heat Exchanger Using Porous Media Approach
,”
Comput. Chem. Eng.
,
61
, pp.
30
37
.
22.
Kotcioglu
,
I.
,
Cansiz
,
A.
, and
Khalaji
,
M. N.
,
2013
, “
Experimental Investigation for Optimization of Design Parameters in a Rectangular Duct With Plate-Fins Heat Exchanger by Taguchi Method
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
604
613
.
23.
Lee
,
D. H.
,
Park
,
J. S.
,
Ryu
,
M. R.
, and
Park
,
J. H.
,
2013
, “
Development of a Highly Efficient Low-Emission Diesel Engine-Powered Co-Generation System and Its Optimization Using Taguchi Method
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
491
495
.
24.
Yang
,
P.
,
Liu
,
Y.
, and
Zhong
,
G.
,
2016
, “
Prediction and Parametric Analysis of Acoustic Streaming in a Thermoacoustic Stirling Heat Engine With a Jet Pump Using Response Surface Methodology
,”
Appl. Therm. Eng.
,
103
, pp.
1004
1013
.
25.
Cabras
,
S.
, and
Castellanos
,
M. E.
,
2017
, “
P-Value Calibration in Multiple Hypotheses Testing
,”
Stat. Med.
,
36
(
18
), pp.
2875
2886
.
26.
Qian
,
S. S.
, and
Cuffney
,
T. F.
,
2018
, “
The Multiple-Comparison Trap and the Raven’s Paradox—Perils of Using Null Hypothesis Testing in Environmental Assessment
,”
Environ. Monit. Assess.
,
190
(
7
), pp.
1
9
.
27.
Okonkwo
,
E. C.
,
Adun
,
H.
,
Babatunde
,
A. A.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2020
, “
Entropy Generation Minimization in a Parabolic Trough Collector Operating With SiO2–Water Nanofluids Using the Genetic Algorithm and Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031007
.
28.
Baiju
,
V.
, and
Muraleedharan
,
C.
,
2015
, “
Experimental Analysis on Adsorption Characteristics of Methanol and R134A by Activated Carbon in Adsorption Refrigeration System
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011004
.
29.
Kennedy
,
J.
, and
Eberhart
,
R. C.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of IEEE International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
, vol.
4
, pp.
1942
1948
.
30.
Mehdi
,
J. K.
,
Nejat
,
A.
, and
Panahi
,
M. S.
,
2018
, “
Heat Transfer Improvement in Automotive Brake Disks via Shape Optimization of Cooling Vanes Using Improved TPSO Algorithm Coupled With Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011013
.
31.
Mousa
,
A. A.
,
El-Shorbagy
,
M. A.
, and
Abd-El-Wahed
,
W. F.
,
2012
, “
Local Search Based Hybrid Particle Swarm Optimization Algorithm for Multiobjective Optimization
,”
Swarm Evol. Comput.
,
3
, pp.
1
14
.
You do not currently have access to this content.