Abstract

Corneal opacity is a leading cause of blindness worldwide. Corneal transplantation and keratoprosthesis can restore vision but have limitations due to the shortage of donor corneas and complications due to infection. A proposed alternative treatment using an intraocular projection prosthesis device can treat corneal disease. In this study, we perform a transient thermal analysis of the bionic eye model to determine the power the device can produce without elevating the eye tissue temperature above the 2°C limit imposed by the international standard for implantable devices. A 3D finite element model, including blood perfusion and natural convection fluid flow of the eye, was created. The device was placed 1.95 mm from the iris, which experienced less than 2°C rise in the tissue temperature at a maximum power dissipation of LED at 100 mW and microdisplay at 25 mW.

References

1.
Bartels
,
M.
,
Doxiadis
,
I.
,
Colen
,
T.
, and
Beekhuis
,
W.
,
2003
, “
Long-Term Outcome in High-Risk Corneal Transplantation and the Influence of HLA-A and HLA-B Matching
,”
Cornea
,
22
(
6
), pp.
552
556
.
2.
Gain
,
P.
,
Jullienne
,
R.
,
Aldossary
,
M.
,
Acquart
,
S.
,
Cognasse
,
F.
, and
Thuret
,
G.
,
2016
, “
Global Survey of Corneal Transplantation and Eye Banking
,”
JAMA Ophthalmol.
,
134
(
2
), pp.
167
173
.
3.
Shim
,
S.
,
Gong
,
S.
,
Rosenblatt
,
M.
,
Palanker
,
D.
,
Al-Qahtani
,
A.
,
Sun
,
M.
,
Zhou
,
Q.
,
Kanu
,
L.
,
Chau
,
F.
, and
Yu
,
C.
,
2019
, “
Feasibility of Intraocular Projection for Treatment of Intractable Corneal Opacity
,”
Cornea
,
38
(
4
), pp.
523
527
.
4.
Shim
,
S.
,
Gong
,
S.
,
Fan
,
V.
,
Rosenblatt
,
M.
,
Al-Qahtani
,
A.
,
Sun
,
M.
,
Zhou
,
Q.
,
Kanu
,
L.
,
Vieira
,
I.
, and
Yu
,
C.
,
2020
, “
Characterization of An Electronic Corneal Prosthesis System
,”
Current Eye Res.
,
45
(
8
), pp.
1
7
, PMID: 31886728.
5.
Lazzi
,
G.
,
2005
, “
Thermal Effects of Bioimplants
,”
IEEE Eng. Med. Biology Magaz.
,
24
(
5
), pp.
75
81
.
6.
Service, S. C.
,
2003
. “
ISO 14708-1: Implants for Surgery-Active Implantable Medical Devices—Part 1: General Requirements for Safety, Marking and for Information to be Provided by the Manufacturer
.”
Communication
.
7.
Piyathaisere
,
D.
,
Margalit
,
E.
,
Chen
,
S.
,
Shyu
,
J.
,
D’Anna
,
S.
,
Weiland
,
J.
,
Grebe
,
R.
,
Grebe
,
L.
,
Fujii
,
G.
,
Kim
,
S.
,
Greenberg
,
R.
,
De Juan Jr
,
E.
, and
Humayun
,
M.
,
2003
, “
Heat Effects on the Retina.
,”
Ophthalmic Surg Lasers Imaging Retina
,
34
(
2
), pp.
114
120
.
8.
DeMarco
,
S.
,
Lazzi
,
G.
,
Wentai
,
L.
,
Weiland
,
J.
, and
Humayun
,
M.
,
2003
, “
Computed SAR and Thermal Elevation in a 0.25-mm 2-d Model of the Human Eye and Head in Response to An Implanted Retinal Stimulator - Part I: Models and Methods
,”
IEEE Trans. Antennas Propagat.
,
51
(
9
), pp.
2274
2285
.
9.
Gosalia
,
K.
,
Weiland
,
J.
,
Humayun
,
M.
, and
Lazzi
,
G.
,
2004
, “
Thermal Elevation in the Human Eye and Head Due to the Operation of a Retinal Prosthesis
,”
IEEE Trans. Biomed. Eng.
,
51
(
8
), pp.
1469
1477
.
10.
Opie
,
N. L.
,
Burkitt
,
A. N.
,
Meffin
,
H.
, and
Grayden
,
D. B.
,
2010
, “
Thermal Heating of a Retinal Prosthesis: Thermal Model and In-Vitro Study
,”
2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
, pp.
1597
1600
.
11.
Opie
,
N. L.
,
Burkitt
,
A. N.
,
Meffin
,
H.
, and
Grayden
,
D. B.
,
2012
, “
Heating of the Eye by a Retinal Prosthesis: Modeling, Cadaver and in Vivo Study
,”
IEEE Trans. Biomed. Eng.
,
59
(
2
), pp.
339
345
.
12.
Stark
,
J.
,
Foster
,
C.
, and
Yu
,
C.
,
2021
, “
Axisymmetric Thermal Finite Element Analysis of Effects of Intraocular Projector in the Human Eye
,”
J. Undergraduate Res.
,
17
(
4
).
13.
Gongal
,
D.
,
Thakur
,
S.
,
Panse
,
A.
,
Pawar
,
R.
,
Foster
,
C.
, and
Yu
,
C.
,
2020
, “
Thermal Analysis of Intraocular Electronic Display Projector Visual Prosthesis
,”
Numer. Heat Trans., Part A: Appl.
,
78
(
12
), pp.
706
716
.
14.
Gokul
,
K.C.
,
Gurung
,
D. B.
, and
Adhikary
,
P. R.
,
2014
, “
Modeling Airflow Effects in Human Eye Temperature With and Without Eyelids
,”
Int. J. Appl. Math. Mech.
,
32
, pp.
649
663
.
15.
Scott
,
J. A.
,
1988
, “
A Finite Element Model of Heat Transport in the Human Eye
,”
Phys. Med. Biol.
,
33
(
2
), pp.
227
242
.
16.
Joukar
,
A.
,
Nammakie
,
E.
, and
Niroomand-Oscuii
,
H.
,
2015
, “
A Comparative Study of Thermal Effects of 3 Types of Laser in Eye: 3D Simulation With Bioheat Equation
,”
J. Thermal Biology
,
49–50
, pp.
74
81
.
17.
Narasimhan
,
A.
,
Jha
,
K. K.
, and
Gopal
,
L.
,
2010
, “
Transient Simulations of Heat Transfer in Human Eye Undergoing Laser Surgery
,”
Int. J. Heat. Mass. Transfer.
,
53
(
1–3
), pp.
482
490
.
18.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2015
, “
Heat Transfer Analysis of the Human Eye During Exposure to Sauna Therapy
,”
Numer. Heat Trans., Part A: Appl.
,
68
(
5
), pp.
566
582
.
19.
Narasimhan
,
A.
, and
Sundarraj
,
C.
,
2013
, “
Effect of Choroidal Blood Perfusion and Natural Convection in Vitreous Humor During Transpupillary Thermotherapy (TTT)
,”
Int. J. Numer. Method Biomed Eng.
,
29
(
4
), pp.
530
541
.
20.
Ooi
,
E. H.
, and
Ng
,
E. Y. K.
,
2008
, “
Simulation of Aqueous Humor Hydrodynamics in Human Eye Heat Transfer
,”
Comput. Biology Med.
,
38
(
2
), pp.
252
262
.
21.
Tiang
,
K. L.
, and
Ooi
,
E. H.
,
2016
, “
Effects of Aqueous Humor Hydrodynamics on Human Eye Heat Transfer Under External Heat Sources
,”
Med. Eng. Phys.
,
38
(
8
), pp.
776
784
.
22.
Canning
,
C.
,
Greaney
,
M.
,
Dewynne
,
J.
, and
Fitt
,
A.
,
2002
, “
Fluid Flow in the Anterior Chamber of a Human Eye
,”
IMA J. Math. Appl. Med. Biology
,
19
(
1
), pp.
31
60
.
23.
Kumar
,
S.
,
Acharya
,
S.
,
Beuerman
,
R.
, and
Palkama
,
A.
,
2006
, “
Numerical Solution of Ocular Fluid Dynamics in a Rabbit Eye: Parametric Effects
,”
Ann. Biomed. Eng.
,
34
(
3
), pp.
530
544
.
24.
Thompson
,
K.
,
Bhardwaj
,
R.
, and
Nguyen
,
T.
,
2017
, “
Development of an Anatomically Accurate Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies. US Army Research Laboratory Report ARLTR-7945
.
25.
Barajas
,
M. H.
,
Atlas of the Human Eye: Anatomy & Biometrics
,
Palibrioy
,
Bloomington, IN
.
26.
Li
,
Y.
, and
Huang
,
D.
,
2009
, “
Pupil Size and Iris Thickness Difference Between Asians and Caucasians Measured by Optical Coherence Tomography
,”
Invest. Ophthalmol. Visual. Sci.
,
50
(
3
), pp.
1552
5783
.
27.
Lagendijk
,
J. J.
,
1982
, “
A Mathematical Model to Calculate Temperature Distributions in Human and Rabbit Eyes During Hyperthermic Treatment
,”
Phys. Med. Biol.
,
27
(
11
), pp.
1301
1311
.
28.
Scott
,
J. A.
,
1988
, “
The Computation of Temperature Rises in the Human Eye Induced by Infrared Radiation
,”
Phys. Med. Biol.
,
33
(
2
), pp.
243
257
.
29.
Flyckt
,
V. M.
,
Raaymakers
,
B. W.
, and
Lagendijk
,
J. J.
,
2006
, “
Modelling the Impact of Blood Flow on the Temperature Distribution in the Human Eye and the Orbit: Fixed Heat Transfer Coefficients Versus the Pennes Bioheat Model Versus Discrete Blood Vessels
,”
Phys. Med. Biol.
,
51
(
19
), pp.
5007
5021
.
30.
Ng
,
E.
, and
Ooi
,
E.
,
2006
, “
FEM Simulation of the Eye Structure With Bioheat Analysis
,”
Comput. Methods Programs Biomed.
,
82
(
3
), pp.
268
276
.
31.
Shafahi
,
M.
, and
Vafai
,
K.
,
2011
, “
Human Eye Response to Thermal Disturbances
,”
ASME J. Heat. Transfer.
,
133
(
1
), p.
011009
.
32.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2013
, “
Specific Absorption Rate and Temperature Increase in the Human Eye Due to Electromagnetic Fields Exposure At Different Frequencies
,”
Int. J. Heat. Mass. Transfer.
,
64
, pp.
426
435
.
33.
Nayar
,
K.
,
Sharqawy
,
M.
,
Banchik
,
L.
, and
Lienhard V
,
J.
,
2016
, “
Thermophysical Properties of Seawater: A Review and New Correlations that Include Pressure Dependence
,”
Desalination
,
390
, pp.
1
24
.
34.
Sharqawy
,
M. H.
,
Lienhard V
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalin. Water. Treat.
,
16
(
1–3
), pp.
354
380
.
35.
Ozbek
,
H.
,
Fair
,
J. A.
, and
Phillips
,
S. L.
,
1977
, “
Viscosity of Aqueous Sodium Chloride Solutions From 0 - 150o c
”.
36.
MIT.edu. 6.777j/2.751j Material properties database
, http://mit.edu/~6.777/matprops/matprops.htm, Accessed March 29, 2020.
37.
Technologies, C.-T.
,
The Thermal Conductivity of Unfilled Plastics
, https://ctherm.com/resources/blog/the_thermal_conductivity_of_unfilled_plastics/, Accessed March 29, 2020.
38.
MatWeb, M. P. D. Overview of Materials for Epoxy Adhesive, http://www.matweb.com/search/datasheettext.aspx?matguid=c1ec1ad603c74f628578663aaf44f261, Accessed March 29, 2020.
39.
Glass properties — Saint-Gobain Sekurit, https://www.saint-gobain-sekurit.com/glossary/glass-properties, Accessed March 28, 2020.
You do not currently have access to this content.