Abstract

An efficient thermal management system is desirable for improving the performance of key components of electric vehicle (EV), such as battery packs and insulated-gate bipolar transistors (IGBTs). This paper investigates the application of single bubble nucleate boiling heat transfer in battery and IGBT component cooling pack. A semi-mechanistic flow boiling model, which combines four main submodels i.e., phase change model, micro-region model, Marangoni model, and contact angle model, is developed to get the insight of various subprocesses like bubble inception, growth, departure, scavenging effect while the bubble departs, and condensation. For model validation, simulations are carried out for single bubble flow boiling in a vertical rectangular channel and compared against the experimental data available in the literature. Thereafter, simulations are carried out for the battery and IGBT cooling pack to understand the physical phenomena associated with nucleate boiling in such systems. The choice of a single vapor bubble vis-à-vis multiple bubbles has been based on the objective of validating the developed numerical model. An enhancement of ∼30% in heat transfer is achieved for both battery and IGBT components when the system is subjected to a nucleate boiling cooling regime as compared to a conventional single-phase convection cooling system. Nusselt number variation due to the single bubble movement along the coolant path is studied in detail for both serpentine-shaped cooling path in a battery and straight flow path in an IGBT. Moreover, the influence of Reynolds number over bubble dynamics is analyzed.

References

1.
Jiang
,
Z. Y.
, and
Qu
,
Z. G.
,
2019
, “
Lithium–Ion Battery Thermal Management Using Heat Pipe and Phase Change Material During Discharge–Charge Cycle: A Comprehensive Numerical Study
,”
App. Energy
,
242
, pp.
378
392
.
2.
Zhang
,
Y. P.
,
Yu
,
X. L.
,
Feng
,
Q. K.
, and
Zhang
,
R. T.
,
2009
, “
Thermal Performance Study of Integrated Cold Plate With Power Module
,”
Appl. Therm. Eng.
,
29
(
17
), pp.
3568
3573
.
3.
Pesaran
,
A. A.
,
Vahines
,
A.
, and
Burch
,
S. D.
,
1997
, “
Thermal Performance of EV and HEV Battery Modules and Pack
,”
Proceedings of the 14th International Electric Vehicle Symposium
,
Orlando, FL
,
Dec. 12–17
, NREL/CP-540-23527.
4.
Kim
,
G. H.
, and
Pesaran
,
A. A.
,
2006
, “
Battery Thermal Management System Design Modeling
,”
Proceedings of 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Conference and Exhibition
,
Yokohama, Japan
,
Oct. 23–28
, NREL/PR-540-40848.
5.
Ghosh
,
D.
,
Maguire
,
P. D.
, and
Zhu
,
D. X.
,
2009
, “Design and CFD Simulation of a Battery Module for a Hybrid Electric Vehicle Battery Pack,” Technical Report No. 2009-01-1386, SAE. 10.4271/2009-01-1386.
6.
Chu
,
R.
,
Simons
,
R.
,
Ellsworth
,
M.
,
Schmidt
,
R.
, and
Cozzolino
,
V.
,
2004
, “
Review of Cooling Technologies for Computer Products
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
568
585
.
7.
Simons
,
R.
,
1995
, “
The Evolution of IBM High Performance Cooling Technology
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
8
(
4
), pp.
805
811
.
8.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
, pp.
969
976
.
9.
Stephan
,
K.
, and
Abdelsalam
,
M.
,
1980
, “
Heat Transfer Correlation for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
,
23
(
1
), pp.
73
87
.
10.
Cooper
,
M. G.
,
1984
, “
Saturation Nucleate Pool Boiling-A Simple Correlation
,”
IchemE Symp. Ser.
,
86
, pp.
786
793
.
11.
Son
,
G.
,
Ramanujapu
,
N.
, and
Dhir
,
V. K.
,
2002
, “
Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling
,”
ASME. J. Heat Transfer
,
124
(
1
), pp.
51
62
.
12.
Welch
,
S. W. J.
, and
Wilson
,
J. A.
,
2000
, “
Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comp. Phys.
,
160
(
2
), pp.
662
682
.
13.
Welch
,
S. W. J.
, and
Radichi
,
T.
,
2002
, “
Numerical Computation of Film Boiling Including Conjugate Heat Transfer
,”
Numer. Heat Transfer
,
42
(
1
), pp.
35
53
.
14.
Cooper
,
M. G.
, and
Lloyd
,
A. J. P.
,
1969
, “
The Microlayer in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
895
913
.
15.
Cooper
,
M. G.
,
1969
, “
The Microlayer and Bubble Growth in Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
915
933
.
16.
Stephan
,
P.
, and
Hammer
,
J.
,
1994
, “
A New Model for Nucleate Boiling Heat Transfer
,”
Heat Mass Transfer
,
30
(
2
), pp.
119
125
.
17.
Stephan
,
P. C.
, and
Busse
,
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
383
391
.
18.
Kunkelmann
,
C.
, and
Stephan
,
P.
,
2009
, “
CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OpenFOAM
,”
Numer. Heat Transfer
,
56
(
8
), pp.
631
646
.
19.
Abdoulaye
,
C.
,
Jingling
,
B.
, and
David
,
M. C.
,
2018
, “
Numerical Study of Bubble Coalescence Heat Transfer During Nucleate Pool Boiling
,”
Heat Transfer Eng.
,
40
(
5–6
), pp.
497
507
.
20.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
632
.
21.
Cao
,
Y.
,
Kawara
,
Z.
,
Yokomine
,
T.
, and
Kunugi
,
T.
,
2016
, “
Experimental and Numerical Study on Nucleate Bubble Deformation in Subcooled Flow Boiling
,”
Int. J. Multiph. Flow
,
82
, pp.
93
105
.
22.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zheng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.
23.
Zeng
,
L. Z.
,
Klausner
,
J. F.
,
Bernhard
,
D. M.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems—I. Pool Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2261
2270
.
24.
Zeng
,
L. Z.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems—II. Flow Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2271
2279
.
25.
Situ
,
R.
,
Hibiki
,
T.
,
Ishii
,
M.
, and
Mori
,
M.
,
2005
, “
Bubble Lift-Off Size in Forced Convective Reed Boiling Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25
), pp.
5536
5548
.
26.
Wu
,
W.
,
Chen
,
P.
,
Jones
,
B. G.
, and
Newell
,
T. A.
,
2008
, “
A Study of Bubble Detachment and the Impact of Heated Surface Structure in Subcooled Nucleate Boiling Flows
,”
Nucl. Eng. Des.
,
238
(
10
), pp.
2693
2698
.
27.
Kim
,
J.
,
Oh
,
B. D.
, and
Kim
,
M. H.
,
2006
, “
Experimental Study of Pool Temperature Effects on Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
32
(
2
), pp.
208
231
.
28.
Gerardi
,
C.
,
Buongiorno
,
J.
,
Hu
,
L.
, and
McKrell
,
T.
,
2010
, “
Study of Bubble Growth in Water Pool Boiling Through Synchronized, Infrared Thermometry and High-Speed Video
,”
Int. J. Heat Mass Transfer
,
53
(
19
), pp.
4185
4192
.
29.
Sinha
,
G. K.
,
Mahimkar
,
S.
, and
Srivastava
,
A.
,
2019
, “
Schlieren-Based Simultaneous Mapping of Bubble Dynamics and Temperature Gradients in Nucleate Flow Boiling Regime: Effect of Flow Rates and Degree of Subcooling
,”
Exp. Therm. Fluid. Sci.
,
104
, pp.
238
257
.
30.
Brackbill
,
J. U.
,
Koethe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
31.
Shyamkumar
,
P. I.
,
Singh
,
S.
,
Srivastava
,
A.
, and
Visaria
,
M.
,
2020
, “
Numerical Investigation of Nucleate Pool Boiling Heat Transfer for Different Superheat Conditions
,”
Heat Transfer Eng.
, pp.
1
18
.
32.
Surya
,
N.
,
Atul
,
S.
, and
Suneet
,
S.
,
2018
, “
Rainbow Schlieren-Based Investigation of Heat Transfer Mechanisms During Isolated Nucleate Pool Boiling Phenomenon: Effect of Superheat Levels
,”
Int. J. Heat Mass Transfer
,
120
, pp.
127
143
.
33.
Manickam
,
S.
, and
Dhir
,
V.
,
2012
, “
Holographic Interferometric Study of Heat Transfer to a Sliding Vapour Bubble
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
925
940
.
You do not currently have access to this content.