Abstract

Utilizing a neural network, individual down-axis images of combustion waves in the rotating detonation engine (RDE) can be classified according to the number of detonation waves present and their directional behavior. While the ability to identify the number of waves present within individual images might be intuitive, the further classification of wave rotational direction is a result of the detonation wave’s profile, which suggests its angular direction of movement. The application of deep learning is highly adaptive and, therefore, can be trained for a variety of image collection methods across RDE study platforms. In this study, a supervised approach is employed where a series of manually classified images is provided to a neural network for the purpose of optimizing the classification performance of the network. These images, referred to as the training set, are individually labeled as one of ten modes present in an experimental RDE. Possible classifications include deflagration, clockwise and counterclockwise variants of co-rotational detonation waves with quantities ranging from one to three waves, as well as single, double, and triple counter-rotating detonation waves. After training the network, a second set of manually classified images, referred to as the validation set, is used to evaluate the performance of the model. The ability to predict the detonation wave mode in a single image using a trained neural network substantially reduces computational complexity by circumnavigating the need to evaluate the temporal behavior of individual pixel regions throughout time. Results suggest that while image quality is critical, it is possible to accurately identify the modal behavior of detonation waves based on only a single image rather than a sequence of images or signal processing. Successful identification of wave behavior using image classification serves as a steppingstone for further machine learning integration in RDE research and development of comprehensive real-time diagnostics.

References

1.
Sick
,
V.
,
2013
, “
High Speed Imaging in Fundamental and Applied Combustion Research
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3509
3530
.
2.
Yamaguchi
,
I.
,
Nakahira
,
T.
,
Komori
,
M.
, and
Kobayashi
,
S.
,
1990
, “
An Image Analysis of High Speed Combustion Photographs for D.I. Diesel Engine With High Pressure Fuel Injection
,” SAE Technical Paper No. 901577.
3.
Lu
,
G.
,
Yan
,
Y.
,
Huang
,
Y.
, and
Reed
,
A.
,
1999
, “
An Intelligent Vision System for Monitoring and Control of Combustion Flames
,”
J. Dyn. Syst.—Trans
. ASME,
32
(
6
), pp.
164
168
.
4.
Nori
,
V.
, and
Seitzman
,
J.
,
2008
, “
Evaluation of Chemiluminescnece as a Combustion Diagnostic Under Varying Operating Conditions
,”
Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 7–10
, AIAA Paper No. 2008-953.
5.
Shepherd
,
J.
,
2009
, “
Detonation in Gases
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
83
98
.
6.
Paxson
,
D. E.
, and
Kaemming
,
T. A.
,
2012
, “
Foundational Performance Analysis of Pressure Gain Combustion Thermodynamic Benefits for Gas Turbines
,”
Proceedings of the 50th AIAA Aerospace Sciences Meeting
,
Nashville, TN
,
Jan. 09–12, 2015
, AIAA Paper No. 2012-0770.
7.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2011
, “
Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines
,”
Proceedings of the 47th AIAA Joint Propulsion Conference
,
San Diego, CA
,
July 31–Aug. 3
, AIAA Paper No. 2011-6044.
8.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.
9.
Naples
,
A. G.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2018
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
Proceedings of ASME Turbo Expo Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-75534.
10.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2018
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
Proceedings of ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-76798.
11.
Bohon
,
M.
,
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Cross-Correlation as a Tool for Measuring RDC Wave Speed, Direction, and Complexity
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
, AIAA Paper No. 2018-4569.
12.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Single and Counter-Rotating Wave Modes in an RDC
,”
Proceedings of the 2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, AIAA Paper No. 2018-1608.
13.
Bohon
,
M. D.
,
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
High-Speed Imaging of Wave Modes in an RDC
,”
Exp. Therm. Fluid. Sci.
,
102
, pp.
28
37
.
14.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Schumaker
,
S. A.
, and
Hargus
,
W. A.
,
2019
, “
Automated Image Processing Method to Quantify Rotating Detonation Wave Behavior
,”
Rev. Sci. Instrum.
,
90
(
6
), p.
065106
.
15.
Johnson
,
K.
,
Ferguson
,
D. H.
, and
Nix
,
A.
,
2020
, “
Validation of Cross-Correlation Detonation Wave Mode Identification Through High-Speed Image Analysis
,”
Proceeding of the AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 11–15
, AIAA Paper No. 2020-1179.
16.
Rawat
,
W.
, and
Wang
,
Z.
,
2017
, “
Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review
,”
Neural Computation
,
29
(
9
), pp.
2352
2449
.
17.
Chollet
,
F.
,
2015
, “
Keras
,” GitHub Repository, https://github.com/keras-team/keras, Accessed March 16, 2020.
18.
Fotia
,
M.
,
Hoke
,
J.
, and
Schauer
,
F. R.
,
2017
, “
Experimental Study of the Ignition Process in Rotating Detonation Engines
,”
Proceedings of the 55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
, AIAA Paper No. 2017-1928.
19.
Rankin
,
B. A.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
, and
Naples
,
A.
,
2015
, “
Imaging of OH* Chemiluminescence in an Optically Accessible Nonpremixed Rotating Detonation Engine
,”
Proceedings of the 53rd AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 5–9
, AIAA Paper No. 2015-1604.
20.
Zhou
,
S.
,
Ma
,
H.
,
Ma
,
Y.
,
Zhou
,
C.
,
Liu
,
D.
, and
Li
,
S.
,
2018
, “
Experimental Study on a Rotating Detonation Combustor With an Axial-Flow Turbine
,”
Acta Astronaut.
,
151
, pp.
7
14
.
21.
Fotia
,
M. L.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2017
, “
Experimental Performance Scaling of Rotating Detonation Engines Operated on Gaseous Fuels
,”
J. Propul. Power
,
33
(
5
), pp.
1187
1196
.
22.
Browne
,
S.
,
Ziegler
,
J.
,
Bitter
,
N.
,
Schmidt
,
B.
,
Lawson
,
J.
, and
Shepherd
,
J. E.
,
2018
, “
Shock and Detonation Toolbox
.” https://shepherd.caltech.edu/EDL/PublicResources/sdt/, Version 2018.
23.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
.” https://www.cantera.org, 2018. Version 2.4.0.
24.
Russakovsky
,
O.
,
Deng
,
J.
,
Su
,
H.
,
Krause
,
J.
,
Satheesh
,
S.
,
Ma
,
S.
,
Huang
,
Z.
,
Karpathy
,
A.
,
Khosla
,
A.
,
Bernstein
,
M.
,
Berg
,
A.
, and
Fei-Fei
,
L.
,
2015
, “
ImageNet Large Scale Visual Recognition Challenge
,”
Int. J. Comput. Vision
,
115
(
3
), pp.
211
252
.
25.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
26.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
Proceedings of the International Conference on Learning Representations 2015
,
San Diego, CA
,
May 7–9
, arXiv Paper No. 1409.1556v6.
27.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
28.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
A Convolutional Neural Network Model for Predicting a Product’s Function, Given Its Form
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111408
.
29.
Mao
,
X.
,
Joshi
,
V.
,
Miyanawala
,
T. P.
, and
Jaiman
,
R. K.
,
2018
, “
Data-Driven Computing With Convolutional Neural Networks for Two-Phase Flows: Application to Wave-Structure Interaction
,”
Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: CFD and FSI
,
Madrid, Spain
,
June 17–22
, ASME Paper No. OMAE2018-78425.
30.
Xia
,
M.
,
Li
,
T.
,
Xu
,
L.
,
Liu
,
L.
, and
de Silva
,
C. W.
,
2018
, “
Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks
,”
IEEE/ASME Trans. Mech.
,
23
(
1
), pp.
101
110
.
31.
Tong
,
M.
,
2019
, “
Using Machine Learning to Predict Core Sizes of High Efficiency Turbofan Engines
,”
Proceedings of the ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-91432.
32.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
33.
Iandola
,
F. N.
,
Han
,
S.
,
Moskewicz
,
M. W.
,
Ashraf
,
K.
,
Dally
,
W. J.
, and
Keutzer
,
K.
,
2017
, “
SqueezeNet: AlexNet-Level Accuracy With 50x Fewer Parameters and <0.5MB Model Size
,”
International Conference on Learning Representations 2017
,
Toulon, FR
,
Apr. 24–26
, arXiv Paper No. 1602.07360v4.
34.
Görner
,
M.
Modern Convnets, SqueezeNet, With Keras and TPUs
.” https://codelabs.developers.google.com/codelabs/keras-flowers-squeezenet/#6. Accessed March 3, 2020.
35.
Walters
,
I. V.
,
Journell
,
C. L.
,
Lemcherfi
,
A.
,
Gejji
,
R.
,
Heister
,
S. D.
, and
Slabaugh
,
C. D.
,
2019
, “
Parametric Survey of a Natural Gas-Air Rotating Detonation Engine at Elevated Pressure
,”
Proceedings of the 2019 AIAA Scitech Forum
,
San Diego, CA
,
Jan. 7–11
, AIAA Paper No. 2019-1510.
36.
Walters
,
I. V.
,
Journell
,
C.
,
Lemcherfi
,
A.
,
Gejji
,
R.
,
Heister
,
S. D.
, and
Slabaugh
,
C. D.
,
2018
, “
Experimental Investigation of a Piloted, Natural Gas-Air Rotating Detonation Wave Combustor
,”
Proceedings of the 2018 AIAA Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
, AIAA Paper No. 2018-4782.
37.
Walters
,
I. V.
,
Journell
,
C.
,
Lemcherfi
,
A. I.
,
Gejji
,
R.
,
Heister
,
S. D.
, and
Slabaugh
,
C. D.
,
2019
, “
Performance Characterization of a Natural Gas-Air Rotating Detonation Engine at Elevated Pressure
,”
Proceedings of the 2019 AIAA Propulsion and Energy Forum
,
Indianapolis, IN
,
Aug. 19–22
, AIAA Paper No. 2019-4214.
You do not currently have access to this content.