Abstract

Natural convection cooling of an electronic component in an electronic device using water-based Fe3O4 magnetic nanofluids is studied under the presence of the magnetic field. The heated vertical electronic component in an enclosure type electronic device with a magnetic field source is used as a model for the study. Different samples of Fe3O4-water nanofluid are prepared using different surfactants and the stability of those samples are estimated using visualization and zeta potential technique. Thermal properties of the stable sample of magnetic nanofluid are precisely measured. The experimentally measured properties are used for further theoretical study. The natural convection is characterized in terms of the relative position of the magnetic source and the electronic component, the strength of the magnetic field, and the magnetization of the nanofluids. Nine different combinations of the position of the magnetic source and the electronic component have been compared with the case in which there is an absence of the magnetic field. The dimensionless number used in this investigation are Rayleigh number (103 ≤ Ra ≤ 106), magnetic numbers (Mn = 100, 500, and 1000), and Hartmann Number (0 ≤ Ha ≤ 100). The position of the magnetic source with respect to the electronic component significantly affects the rate of heat transfer. The effect is more pronounced when the magnetic source is placed below any of the two vertical walls of the enclosure. The fluid flow is observed distorted near the magnetic source when the Ha is increased. The increment in the magnetic number strengthens the flow, which leads to the enhanced heat transfer rate.

References

1.
Pfahl
,
R.
, and
McElroy
,
J.
,
2005
, “
The 2004 International Electronics Manufacturing Initiative (INEMI) Technology Roadmaps
,”
2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis
,
Shanghai, China
,
June 27–29
,
IEEE
, pp.
1
7
.
2.
Pedram
,
M.
, and
Nazarian
,
S.
,
2006
, “
Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods
,”
Proc. IEEE
,
94
(
8
), pp.
1487
1501
. 10.1109/JPROC.2006.879797
3.
Kandaswamy
,
P.
,
Lee
,
J.
,
Abdul Hakeem
,
A. K.
, and
Saravanan
,
S.
,
2008
, “
Effect of Baffle–Cavity Ratios on Buoyancy Convection in a Cavity With Mutually Orthogonal Heated Baffles
,”
Int. J. Heat Mass Transf.
,
51
(
7–8
), pp.
1830
1837
. 10.1016/j.ijheatmasstransfer.2007.06.039
4.
Murshed
,
S.
,
M
,
S.
,
de Castro
,
N.
, and
A
,
C.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
821
833
. 10.1016/j.rser.2017.04.112
5.
Ostrach
,
S.
,
1988
, “
Natural Convection in Enclosures
,”
ASME J. Heat Transf.
,
110
(
4b
), pp.
1175
1190
. 10.1115/1.3250619
6.
Patterson
,
J.
, and
Imberger
,
J.
,
1980
, “
Unsteady Natural Convection in a Rectangular Cavity
,”
J. Fluid Mech.
,
100
(
1
), pp.
65
86
. 10.1017/S0022112080001012
7.
Gebhart
,
B.
,
1962
, “
Effects of Viscous Dissipation in Natural Convection
,”
J. Fluid Mech.
,
14
(
2
), pp.
225
232
. 10.1017/S0022112062001196
8.
Kumar
,
A.
, and
Subudhi
,
S.
,
2020
, “
Thermal Fluctuations and Boundary Layer Properties of Turbulent Natural Convection Inside Open Cavities of Different Dimensions Heated From Below
,”
Phys. Fluids
,
32
(
6
), p.
067114
. 10.1063/5.0008160
9.
Saravanan
,
S.
,
Abdul Hakeem
,
A. K.
,
Kandaswamy
,
P.
, and
Lee
,
J.
,
2008
, “
Buoyancy Convection in a Cavity With Mutually Orthogonal Heated Plates
,”
Comput. Math. Appl.
,
55
(
12
), pp.
2903
2912
. 10.1016/j.camwa.2007.11.024
10.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2009
, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech.—B/Fluids
,
28
(
5
), pp.
630
640
. 10.1016/j.euromechflu.2009.05.006
11.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
. 10.1016/j.ijheatfluidflow.2008.04.009
12.
Mahmoodi
,
M.
,
2011
, “
Numerical Simulation of Free Convection of Nanofluid in a Square Cavity With an Inside Heater
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2161
2175
. 10.1016/j.ijthermalsci.2011.05.008
13.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
. 10.1016/S0017-9310(03)00156-X
14.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Argonne National Laboratory
,
IL
.
15.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
. 10.1115/1.2825978
16.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles Dispersion of Al2O3; SiO2 and TiO2 Ultra-Fine Particles
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
. 10.2963/jjtp.7.227
17.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
. 10.1063/1.1341218
18.
Kumar
,
A.
, and
Subudhi
,
S.
,
2018
, “
Preparation, Characteristics, Convection and Applications of Magnetic Nanofluids: A Review
,”
Heat Mass Transfer
,
54
(
2
), pp.
241
265
. 10.1007/s00231-017-2114-4
19.
Zhu
,
H.
,
Zhang
,
C.
,
Liu
,
S.
,
Tang
,
Y.
, and
Yin
,
Y.
,
2006
, “
Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
,
89
(
2
), p.
023123
. 10.1063/1.2221905
20.
Kumar
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2021
, “
Magnetic Field Effect on the Buoyancy-Driven Convection and Fluid Motion in Fe3O4/Water Nanofluid Filled Inside an Enclosure With Mutual Orthogonal Heaters
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041021
. 10.1115/1.4048839
21.
Ghadimi
,
A.
, and
Metselaar
,
I. H.
,
2013
, “
The Influence of Surfactant and Ultrasonic Processing on Improvement of Stability, Thermal Conductivity and Viscosity of Titania Nanofluid
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
1
9
. 10.1016/j.expthermflusci.2013.06.001
22.
Pantokratoras
,
A.
, and
Fang
,
T.
,
2010
, “
Flow of a Weakly Conducting Fluid in a Channel Filled With a Porous Medium
,”
Transp. Porous Media
,
83
(
3
), pp.
667
676
. 10.1007/s11242-009-9470-6
23.
Rassoulinejad-Mousavi
,
S. M.
,
Abbasbandy
,
S.
, and
Alsulami
,
H. H.
,
2014
, “
Analytical Flow Study of a Conducting Maxwell Fluid Through a Porous Saturated Channel at Various Wall Boundary Conditions
,”
Eur. Phys. J. Plus
,
129
(
8
), p.
181
. 10.1140/epjp/i2014-14181-4
24.
Amjad
,
M.
,
Zehra
,
I.
,
Nadeem
,
S.
,
Abbas
,
N.
,
Saleem
,
A.
, and
Issakhov
,
A.
,
2020
, “
Influence of Lorentz Force and Induced Magnetic Field Effects on Casson Micropolar Nanofluid Flow Over a Permeable Curved Stretching/Shrinking Surface Under the Stagnation Region
,”
Surf. Interfaces
,
21
, p.
100766
. 10.1016/j.surfin.2020.100766
25.
Giwa
,
S. O.
,
Sharifpur
,
M.
,
Ahmadi
,
M. H.
, and
Meyer
,
J. P.
,
2020
, “
A Review of Magnetic Field Influence on Natural Convection Heat Transfer Performance of Nanofluids in Square Cavities
,”
J. Therm. Anal. Calorim.
, pp.
1
43
. 10.1007/s10973-020-09832-3
26.
Choudhary
,
R.
,
Khurana
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Stability Analysis of Al 2 O 3/Water Nanofluids
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
140
151
. 10.1080/17458080.2017.1285445
27.
Loukopoulos
,
V. C.
, and
Tzirtzilakis
,
E. E.
,
2004
, “
Biomagnetic Channel Flow in Spatially Varying Magnetic Field
,”
Int. J. Eng. Sci.
,
42
(
5–6
), pp.
571
590
. 10.1016/j.ijengsci.2003.07.007
28.
Hiroyuki
,
O.
,
Akira
,
M.
,
Masaru
,
O.
,
Churchill
,
S. W.
, and
Lior
,
N.
,
1985
, “
Numerical Calculations of Laminar and Turbulent Natural Convection in Water in Rectangular Channels Heated and Cooled Isothermally on the Opposing Vertical Walls
,”
Int. J. Heat Mass Transfer
,
28
(
1
), pp.
125
138
. 10.1016/0017-9310(85)90014-6
29.
Ghasemi
,
B.
,
Aminossadati
,
S. M.
, and
Raisi
,
A.
,
2011
, “
Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1748
1756
. 10.1016/j.ijthermalsci.2011.04.010
30.
Garoosi
,
F.
,
Bagheri
,
G.
, and
Talebi
,
F.
,
2013
, “
Numerical Simulation of Natural Convection of Nanofluids in a Square Cavity With Several Pairs of Heaters and Coolers (HACs) Inside
,”
Int. J. Heat Mass Transfer
,
67
, pp.
362
376
. 10.1016/j.ijheatmasstransfer.2013.08.034
31.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford
.
32.
Sheikholeslami
,
M.
, and
Vajravelu
,
K.
,
2017
, “
Nanofluid Flow and Heat Transfer in a Cavity With Variable Magnetic Field
,”
Appl. Math. Comput.
,
298
, pp.
272
282
. 10.1016/j.amc.2016.11.025
33.
Calcagni
,
B.
,
Marsili
,
F.
, and
Paroncini
,
M.
,
2005
, “
Natural Convective Heat Transfer in Square Enclosures Heated From Below
,”
Appl. Therm. Eng.
,
25
(
16
), pp.
2522
2531
. 10.1016/j.applthermaleng.2004.11.032
34.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
. 10.1002/fld.1650030305
35.
Markatos
,
N. C.
, and
Pericleous
,
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
755
772
. 10.1016/0017-9310(84)90145-5
You do not currently have access to this content.