Abstract

The helically coiled tubes (HCTs) have been attracting huge attention for enhancing the heat transfer of supercritical fluids and improving energy efficiency. Moreover, the new refrigerant R1234ze(E) has excellent environmental properties and system performance, but few researches have been concentrated on the supercritical R1234ze(E) heat transfer. In this work, the shear stress transport (SST) turbulence model is adopted for the numerical simulation of the cooling heat transfer performance of s-R1234ze(E) in horizontal HCT. The influences of heat flux, mass flux, coil pitch, and tube radius on the heat transfer coefficient, gravitational buoyancy effect, and centrifugal buoyancy effect are, respectively, investigated. Furthermore, the results reveal heat transfer oscillation occurs when Rig*|cosβ|max>0.17, and the oscillation mechanism is analyzed. Different from that in the vertical HCT, the angle between the radial component of gravitational buoyancy and centrifugal force varies continuously in the horizontal helical tube, resulting in the fluid with lower temperature may locate in the inner-left region or the inner-right region. Subsequently, the heat transfer piecewise correlation for supercritical R1234ze(E) in horizontal HCT is developed. The average absolute deviation of the predicted results is 5.88%.

References

1.
Yang
,
Z.
,
Cheng
,
X.
,
Zheng
,
X. H.
, and
Chen
,
H. S.
,
2019
, “
Numerical Investigation on Heat Transfer of the Supercritical Fluid Upward in Vertical Tube With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
128
(
1
), pp.
875
884
. 10.1016/j.ijheatmasstransfer.2018.09.049
2.
Sun
,
X.
,
Xu
,
K. K.
,
Meng
,
H.
, and
Zheng
,
Y.
,
2018
, “
Buoyancy Effects on Supercritical-Pressure Conjugate Heat Transfer of Aviation Kerosene in Horizontal Tubes
,”
J. Supercrit. Fluids
,
139
(
1
), pp.
105
113
. 10.1016/j.supflu.2018.05.016
3.
Liu
,
Z. B.
,
He
,
Y. L.
,
Yang
,
Y. F.
, and
Fei
,
J. Y.
,
2014
, “
Experimental Study on Heat Transfer and Pressure Drop of Supercritical CO2 Cooled in a Large Tube
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
307
315
. 10.1016/j.applthermaleng.2014.05.024
4.
Du
,
Z. X.
,
Lin
,
W. S.
, and
Gu
,
A. Z.
,
2010
, “
Numerical Investigation of Cooling Heat Transfer to Supercritical CO2 in a Horizontal Circular Tube
,”
J. Supercrit. Fluids
,
55
(
1
), pp.
116
121
. 10.1016/j.supflu.2010.05.023
5.
Xiang
,
M. R.
,
Guo
,
J. F.
,
Huai
,
X. L.
, and
Cui
,
X. Y.
,
2017
, “
Thermal Analysis of Supercritical Pressure CO2 in Horizontal Tubes Under Cooling Condition
,”
J. Supercrit. Fluids
,
130
(
1
), pp.
389
398
. 10.1016/j.supflu.2017.04.009
6.
Wang
,
J. Y.
,
Guan
,
Z. Q.
,
Gurgenci
,
H.
,
Veeraragavan
,
A.
,
Kang
,
X.
, and
Hooman
,
K.
,
2019
, “
A Computationally Derived Heat Transfer Correlation for In-Tube Cooling Turbulent Supercritical CO2
,”
Int. J. Therm. Sci.
,
138
(
1
), pp.
190
205
. 10.1016/j.ijthermalsci.2018.12.045
7.
Li
,
L. J.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
1999
, “
Turbulent Heat Transfer to Near-Critical Water in a Heated Curved Pipe Under the Conditions of Mixed Convection
,”
Int. J. Heat Mass Transfer
,
42
(
16
), pp.
3147
3158
. 10.1016/S0017-9310(98)00365-2
8.
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
1999
, “
The Effects of Inlet Turbulence on the Development of Fluid Flow and Heat Transfer in a Helically Coiled Pipe
,”
Int. J. Heat Mass Transfer
,
42
(
4
), pp.
739
751
. 10.1016/S0017-9310(98)00193-8
9.
Wang
,
K. Z.
,
Xu
,
X. X.
,
Wu
,
Y. Y.
,
Liu
,
C.
, and
Dang
,
C. B.
,
2015
, “
Numerical Investigation on Heat Transfer of Supercritical CO2 in Heated Helically Coiled Tubes
,”
J. Supercrit. Fluids
,
99
(
1
), pp.
112
120
. 10.1016/j.supflu.2015.02.001
10.
Li
,
Z. H.
,
Zhai
,
Y. L.
,
Li
,
K. Z.
,
Wang
,
H.
, and
Lu
,
J. F.
,
2016
, “
A Quantitative Study on the Interaction Between Curvature and Buoyancy Effects in Helically Coiled Heat Exchangers of Supercritical CO2 Rankine Cycles
,”
Energy
,
116
(
1
), pp.
661
676
. 10.1016/j.energy.2016.10.005
11.
Zhang
,
S. J.
,
Xu
,
X. X.
,
Liu
,
C.
,
Liu
,
X. X.
,
Zhang
,
Y. D.
, and
Dang
,
C. B.
,
2019
, “
The Heat Transfer of Supercritical CO2 in Helically Coiled Tube: Trade-Off Between Curvature and Buoyancy Effect
,”
Energy
,
176
(
1
), pp.
765
777
. 10.1016/j.energy.2019.03.150
12.
Zhao
,
H. J.
,
Li
,
X. W.
, and
Wu
,
X. X.
,
2017
, “
Numerical Investigation of Supercritical Water Turbulent Flow and Heat Transfer Characteristics in Vertical Helical Tubes
,”
J. Supercrit. Fluids
,
127
(
1
), pp.
48
61
. 10.1016/j.supflu.2017.03.016
13.
Xu
,
J. L.
,
Yang
,
C. Y.
,
Zhang
,
W.
, and
Sun
,
D. L.
,
2015
, “
Turbulent Convective Heat Transfer of CO2 in a Helical Tube at Near-Critical Pressure
,”
Int. J. Heat Mass Transfer
,
80
(
1
), pp.
748
758
. 10.1016/j.ijheatmasstransfer.2014.09.066
14.
Zhang
,
W.
,
Wang
,
S. X.
,
Li
,
C. D.
, and
Xu
,
J. L.
,
2015
, “
Mixed Convective Heat Transfer of CO2 at Supercritical Pressures Flowing Upward Through a Vertical Helically Coiled Tube
,”
Appl. Therm. Eng.
,
88
(
SI
), pp.
61
70
. 10.1016/j.applthermaleng.2014.10.031
15.
Bai
,
W. J.
,
Zhang
,
S. J.
,
Li
,
H. R.
, and
Xu
,
X. X.
,
2019
, “
Effects of Abnormal Gravity on Heat Transfer of Supercritical CO2 in Heated Helically Coiled Tube
,”
Appl. Therm. Eng.
,
159
(
1
), p.
113833
. 10.1016/j.applthermaleng.2019.113833
16.
Liu
,
X. X.
,
Xu
,
X. X.
,
Liu
,
C.
,
He
,
J. C.
, and
Dang
,
C. B.
,
2019
, “
The Effect of Geometry Parameters on the Heat Transfer Performance of Supercritical CO2 in Horizontal Helically Coiled Tube Under the Cooling Condition
,”
Int. J. Refrig.
,
106
(
1
), pp.
650
661
. 10.1016/j.ijrefrig.2019.02.008
17.
Xu
,
X. X.
,
Liu
,
C.
,
Dang
,
C. B.
,
Wu
,
Y. Y.
, and
Liu
,
X. X.
,
2016
, “
Experimental Investigation on Heat Transfer Characteristics of Supercritical CO2 Cooled in Horizontal Helically Coiled Tube
,”
Int. J. Refrig.
,
67
(
1
), pp.
190
201
. 10.1016/j.ijrefrig.2016.03.010
18.
Yang
,
M.
,
2016
, “
Numerical Study of the Characteristics Influence of the Helically Coiled Tube on the Heat Transfer of Carbon Dioxide
,”
Appl. Therm. Eng.
,
102
(
1
), pp.
882
896
. 10.1016/j.applthermaleng.2016.04.044
19.
Wang
,
K. Z.
,
Xu
,
X. X.
,
Liu
,
C.
,
Bai
,
W. J.
, and
Dang
,
C. B.
,
2017
, “
Experimental and Numerical Investigation on Heat Transfer Characteristics of Supercritical CO2 in the Cooled Helically Coiled Tube
,”
Int. J. Heat Mass Transfer
,
108
(
B
), pp.
1645
1655
. 10.1016/j.ijheatmasstransfer.2017.01.004
20.
Park
,
J. E.
,
Vakili-Farahani
,
F.
,
Consolini
,
L.
, and
Thome
,
J. R.
,
2011
, “
Experimental Study on Condensation Heat Transfer in Vertical Minichannels for New Refrigerant R1234ze(E) Versus R134a and R236fa
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
442
454
. 10.1016/j.expthermflusci.2010.11.006
21.
Mota-Babiloni
,
A.
,
Navarro-Esbri
,
J.
,
Moles
,
F.
,
Cervera
,
A. B.
,
Peris
,
B.
, and
Verdu
,
G.
,
2016
, “
A Review of Refrigerant R1234ze(E) Recent Investigations
,”
Appl. Therm. Eng.
,
95
(
1
), pp.
211
222
. 10.1016/j.applthermaleng.2015.09.055
22.
Liu
,
X. X.
,
Xu
,
X. X.
,
Liu
,
C.
,
Bai
,
W. J.
, and
Dang
,
C. B.
,
2018
, “
Heat Transfer Deterioration in Helically Coiled Heat Exchangers in Trans-Critical CO2 Rankine Cycles
,”
Energy
,
147
(
1
), pp.
1
14
. 10.1016/j.energy.2017.12.163
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
24.
Wang
,
C. G.
,
Sun
,
B. K.
,
Lin
,
W.
,
He
,
F.
,
You
,
Y. Q.
, and
Yu
,
J. Y.
,
2018
, “
Turbulent Convective Heat Transfer of Methane at Supercritical Pressure in a Helical Coiled Tube
,”
J. Therm. Sci.
,
27
(
1
), pp.
55
63
. 10.1007/s11630-018-0984-5
25.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties Database (REFPROP), version 9.1
, Standard Reference Data,
National Institute of Standards and Technology
,
Gaitherburg, MD
.
26.
Ito
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
ASME J. Basic Eng.
,
81
(
2
), pp.
123
134
. 10.1115/1.4008390
27.
Srinivasan
,
P. S.
,
Nandapurkar
,
S. S.
, and
Holland
,
F. A.
,
1970
, “
Friction Factors for Coils
,”
Trans. Inst. Chem. Eng.
,
48
(
4–6
), pp.
156
161
.
28.
Janssen
,
L. A. M.
, and
Hoogendoorn
,
C. J.
,
1978
, “
Laminar Convective Heat Transfer in Helical Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
9
), pp.
1197
1206
. 10.1016/0017-9310(78)90138-2
29.
Wang
,
J. Y.
,
Guan
,
Z. Q.
,
Gurgenci
,
H.
,
Veeraragavan
,
A.
,
Kang
,
X.
, and
Sun
,
Y. B.
,
2018
, “
Numerical Study on Cooling Heat Transfer of Turbulent Supercritical CO2 in Larger Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
126
(
B
), pp.
1002
1019
. 10.1016/j.ijheatmasstransfer.2018.06.070
30.
Merkel
,
F.
,
1927
,
Die Grundlagen der Warmeubertragung
,
Springer Publishing Company
,
Berlin
.
You do not currently have access to this content.