Abstract

The study of thermal hydraulics of a hexagonal sub-assembly is essential to ensure the safe operation of liquid metal cooled fast reactors. Identifying the dryout location in fuel sub-assembly (FSA) is a precursor to the determination of safe Critical Heat Flux (CHF) margins. In this study, a sub-channel analysis code coupled with a film thickness model is employed to predict the CHF location in a hexagonal sub-assembly. A simple post-CHF heat transfer model is proposed and validated against the experimental data. The nature of flow resistance changes and operating conditions would significantly influence the occurrence of CHF. To this end, the effect of blockage (0.0 ≤ b ≤ 0.3) and axial power distribution (APD) on CHF is systematically investigated in a hexagonal sub-assembly. It was observed that the presence of blockage causes coolant flow maldistribution which results in an early occurrence of CHF for higher mass flux (G > 1500 kgm−2s−1) and lower inlet subcooling (ΔTsub ≤ 30 K) conditions for b = 0.3. Furthermore, a comparative study of uniform and sinusoidal heat flux distributions is performed. It was noticed that sinusoidal APD causes the early occurrence of CHF compared to uniform APD.

References

References
1.
Velusamy
,
K.
,
Chellapandi
,
P.
,
Chetal
,
S. C.
, and
Raj
,
B.
,
2010
, “
Overview of Pool Hydraulic Design of Indian Prototype Fast Breeder Reactor
,”
Sadhana
,
35
(
2
), pp.
97
128
. 10.1007/s12046-010-0022-0
2.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
, 3rd ed.,
Clarendon Press
,
Oxford
.
3.
Wu
,
Y.
,
Luo
,
S.
,
Wang
,
L.
,
Hou
,
Y.
,
Su
,
G. H.
,
Tian
,
W.
, and
Qiu
,
S.
,
2018
, “
Review on Heat Transfer and Flow Characteristics of Liquid Sodium (2): Two Phase
,”
Prog. Nucl. Energy
,
103
, pp.
151
164
. 10.1016/j.pnucene.2017.11.016
4.
Ravi
,
L.
,
Velusamy
,
K.
, and
Chellapandi
,
P.
,
2016
, “
Conjugate Heat Transfer Investigation of Core Damage Propagation During Total Instantaneous Blockage in SFR Fuel Subassembly
,”
Ann. Nucl. Energy
,
90
, pp.
371
388
. 10.1016/j.anucene.2015.09.032
5.
Liu
,
X. J.
,
Yang
,
D. M.
,
Yang
,
Y.
,
Chai
,
X.
,
Xiong
,
J. B.
,
Zhang
,
T. F.
, and
Cheng
,
X.
,
2020
, “
Computational Fluid Dynamics and Subchannel Analysis of Lead Bismuth Eutectic Cooled Fuel Assembly Under Various Blockage Conditions
,”
Appl. Therm. Eng.
,
164
, p.
114419
. 10.1016/j.applthermaleng.2019.114419
6.
Hewitt
,
G. F.
, and
Collier
,
J. G.
,
2000
,
Introduction to Nuclear Power
, 2nd ed.,
CRC Press
,
New York
.
7.
Pothukuchi
,
H.
,
Patnaik
,
B. S. V.
, and
Prasad
,
B. V. S. S. S.
,
2016
, “
Numerical Prediction of Dryout in a 19 Rod Bundle Under the Effect of Eccentricity and Blockage
,”
Nucl. Eng. Des.
,
310
, pp.
328
350
. 10.1016/j.nucengdes.2016.10.016
8.
Gluck
,
M.
,
2007
, “
Subchannel Analysis With F-COBRA-TF Code Validation and Approaches CHF Prediction
,”
Nucl. Eng. Des.
,
237
(
6
), pp.
655
667
. 10.1016/j.nucengdes.2006.08.011
9.
Pothukuchi
,
H.
,
Patnaik
,
B. S. V.
, and
Prasad
,
B. V. S. S. S.
,
2016
, “
Sub-channel Analysis of Rod Bundle Thermal Hydraulics: Effect of Eccentricity and Blockage
,”
Nucl. Eng. Des.
,
300
, pp.
475
494
. 10.1016/j.nucengdes.2016.01.034
10.
Chauhan
,
A. K.
,
Prasad
,
B. V. S. S. S.
, and
Patnaik
,
B. S. V.
,
2013
, “
Thermal Hydraulics of Rod Bundles: Effect of Eccentricity
,”
Nucl. Eng. Des.
,
263
, pp.
218
240
. 10.1016/j.nucengdes.2013.04.011
11.
Pothukuchi
,
H.
,
Kelm
,
S.
,
Patnaik
,
B. S. V.
,
Prasad
,
B. V. S. S. S.
, and
Allelein
,
H.-J.
,
2019
, “
CFD Modeling of Critical Heat Flux in Flow Boiling: Validation and Assessment of Closure Models
,”
Appl. Therm. Eng.
,
150
, pp.
651
665
. 10.1016/j.applthermaleng.2019.01.030
12.
Pothukuchi
,
H.
,
Kelm
,
S.
,
Patnaik
,
B. S. V.
,
Prasad
,
B. V. S. S. S.
, and
Allelein
,
H.-J.
,
2018
, “
Numerical Investigation of Subcooled Flow Boiling in an Annulus Under the Effect of Eccentricity
,”
Appl. Therm. Eng.
,
129
, pp.
1604
1617
. 10.1016/j.applthermaleng.2017.10.105
13.
Murallidharan
,
J. S.
,
Prasad
,
B. V. S. S. S.
,
Patnaik
,
B. S. V.
,
Hewitt
,
G. F.
, and
Badalassi
,
V.
,
2016
, “
CFD Investigation and Assessment of Wall Heat Flux Partitioning Model for the Prediction of High Pressure Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
103
, pp.
211
230
. 10.1016/j.ijheatmasstransfer.2016.06.050
14.
Whalley
,
P. B.
,
1977
, “
The Calculation of Dryout in a Rod Bundle
,”
Int. J. Multiphase Flow
,
3
(
6
), pp.
501
515
. 10.1016/0301-9322(77)90026-X
15.
Hewitt
,
G. F.
, and
Govan
,
A. H.
,
1990
, “
Phenomenological Modelling of Non-Equilibrium Flows With Phase Change
,”
Int. J. Heat Mass Transfer
,
33
(
2
), pp.
229
242
. 10.1016/0017-9310(90)90094-B
16.
Becker
,
K. M.
,
Ling
,
C. H.
,
Hedberg
,
S.
, and
Strand
,
G.
,
1983
, “
An Experimental Investigation of Post Dryout Heat Transfer
”,
Department of Nuclear Reactor Engineering
,
Royal Institute of Technology
, Report No. KTH-NEL-33, Stockholm, Sweden.
17.
Evans
,
D.
,
Webb
,
S. W.
, and
Chen
,
J. C.
,
1985
, “
Axially Varying Vapour Superheats in Convective Film Boiling
,”
ASME J. Heat Transfer
,
107
(
3
), pp.
663
669
. 10.1115/1.3247475
18.
Chang
,
S. H.
, and
Lee
,
Y. B.
,
1994
, “
A new Critical Heat Flux Model for Liquid Metals Under Low Heat Flux—Low Flow Conditions
,”
Nucl. Eng. Des.
,
148
(
2–3
), pp.
487
498
. 10.1016/0029-5493(94)90128-7
19.
Becker
,
K.
, and
Hernborg
,
G.
,
1964
, “
Measurements of the Effects of Spacers on the Burnout Conditions for Flow Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster
”,
AE-165, AKTIEBOLAGET ATOMENERGI, Stockholm, Sweden
.
20.
Lucchini
,
F.
, and
Marinelli
,
V.
,
1974
, “
Experimental Data on Burn-Out in a Simulated BWR Fuel Bundle
,”
Nucl. Eng. Des.
,
31
(
3
), pp.
371
378
. 10.1016/0029-5493(75)90172-7
21.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
. 10.1016/0017-9310(86)90205-X
22.
Groeneveld
,
D. C.
,
1973
, “
Post-dryout Heat Transfer at Reactor Operating Conditions
,”
National Tropical Meeting on Water Reactor Safety
,
ANS, AECL-4513
.
23.
Groeneveld
,
D. C.
,
1975
, “
Post-dryout Heat Transfer: Physical Mechanisms and a Survey of Prediction Methods
,”
Nucl. Eng. Des.
,
32
(
3
), pp.
283
294
. 10.1016/0029-5493(75)90099-0
24.
Guo
,
Y.
, and
Mishima
,
K.
,
2002
, “
A non-Equilibrium Mechanistic Heat Transfer Model for Post-dryout Dispersed Flow Regime
,”
Exp. Therm. Fluid. Sci.
,
26
(
6–7
), pp.
861
869
. 10.1016/S0894-1777(02)00195-4
25.
Nguyen
,
N. H.
, and
Moon
,
S. K.
,
2015
, “
An Improved Heat Transfer Correlation for Developing Post-dryout Region in Vertical Tubes
,”
Nucl. Eng. Technol.
,
47
(
4
), pp.
407
415
. 10.1016/j.net.2015.04.004
26.
Nguyen
,
N. H.
,
Moon
,
S. K.
, and
Song
,
C. H.
,
2018
, “
Extended Validation of a Developing Post-dryout Heat Transfer Correlation Over a Wide Range of Pressure Conditions
,”
Nucl. Eng. Des.
,
338
, pp.
119
129
. 10.1016/j.nucengdes.2018.07.032
27.
Groeneveld
,
D. C.
,
Leung
,
L. K. H.
,
Vasic
,
A. Z.
,
Guo
,
Y. J.
, and
Cheng
,
S. C.
,
2003
, “
A Look-up Table for Fully Developed Film Boiling Heat Transfer
,”
Nucl. Eng. Des.
,
225
(
1
), pp.
83
97
. 10.1016/S0029-5493(03)00149-3
28.
Geisler
,
K. J. L.
, and
Natarajan
,
S.
,
2016
, “
Confinement Effects on FKE-774 Critical Heat Flux in Buoyancy Driven Microgap Channels
,”
J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
024502
. 10.1115/1.4031931
29.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2013
, “
Characterization of Twisted Tape Induced Helical Swirl Flows for Enhancement of Forced Convective Heat Transfer in Single Phase and Two Phase Flows
,”
J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021010
. 10.1115/1.4023935
30.
Chen
,
S.
,
Gu
,
H.
,
Liu
,
M.
,
Xiao
,
Y.
, and
Cui
,
D.
,
2020
, “
Experimental Investigation on Heat Transfer to Supercritical Water in a Three Rod Bundle With Spacer Grids
,”
Appl. Therm. Eng.
,
164
, p.
114466
. 10.1016/j.applthermaleng.2019.114466
31.
Jayanti
,
S.
, and
Valette
,
M.
,
2004
, “
Prediction of Dryout and Post Dryout Heat Transfer at High Pressures Using a One Dimensional Three Fluid Model
,”
Int. J. Heat Mass Transfer
,
47
(
22
), pp.
4895
4910
. 10.1016/j.ijheatmasstransfer.2004.03.028
32.
Jayanti
,
S.
, and
Valette
,
M.
,
2005
, “
Calculation of Dryout and Post Dryout Heat Transfer in Rod Bundles Using a Three Field Model
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1825
1839
. 10.1016/j.ijheatmasstransfer.2004.11.005
33.
Jayanti
,
S.
, and
Reddy
,
R. K.
,
2013
, “
Effect of Spacer Grids on CHF in Nuclear Rod Bundles
,”
Nucl. Eng. Des.
,
261
, pp.
66
75
. 10.1016/j.nucengdes.2013.03.044
34.
Guo
,
Y.
,
Groeneveld
,
D. C.
, and
Cheng
,
S. C.
,
2001
, “
Prediction of CHF Enhancement due to Flow Obstacles
,”
Int. J. Heat Mass Transfer
,
44
(
23
), pp.
4557
4561
. 10.1016/S0017-9310(01)00088-6
35.
Pioro
,
I. L.
,
Groeneveld
,
D. C.
,
Doerffer
,
S. S.
,
Guo
,
Y.
,
Cheng
,
S. C.
, and
Vasic
,
A.
,
2002
, “
Effect of Flow Obstacles on the Critical Heat Flux in a Vertical Tube Cooled With Upward Flow of R-134a
,”
Int. J. Heat Mass Transfer
,
45
(
22
), pp.
4417
4433
. 10.1016/S0017-9310(02)00150-3
36.
Chung
,
J. B.
,
Baek
,
W. P.
, and
Chang
,
S. H.
,
1996
, “
Effect of Spacers and Mixingvanes on the Critical Heat Flux for Low Pressure Water at Low Velocities
,”
Int. Commun. Heat Mass Transfer
,
23
(
6
), pp.
757
765
. 10.1016/0735-1933(96)00059-0
37.
Shin
,
B. S.
, and
Chang
,
S. H.
,
2009
, “
CHF Experiment and CFD Analysis in a 2×3 Rod Bundle With Mixing Vane
,”
Nucl. Eng. Des.
,
239
(
5
), pp.
899
912
. 10.1016/j.nucengdes.2009.01.011
38.
Adamsson
,
C.
, and
Anglart
,
H.
,
2010
, “
Influence of Axial Power Distribution on Dryout: Film-Flow Models and Experiments
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1495
1505
. 10.1016/j.nucengdes.2010.02.013
39.
Nemitallah
,
M. A.
,
Habib
,
M. A.
,
Mansour
,
R. B.
, and
Nakla
,
M. E.
,
2015
, “
Numerical Predictions of Flow Boiling Characteristics: Current Status, Model Setup and CFD Modeling for Different Non-uniform Heating Profiles
,”
Appl. Therm. Eng.
,
75
, pp.
451
460
. 10.1016/j.applthermaleng.2014.09.036
40.
Eltaweel
,
A.
, and
Hassan
,
I.
,
2020
, “
Experimental Study of a Single Microchannel Flow Under Non-uniform Heat Flux
,”
J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011004
. 10.1115/1.4042153
41.
Hirao
,
S.
, and
Nakao
,
N.
,
1974
, “
DIANA—A Fast and High Capacity Computer Code for Inter-channel Coolant Mixing in Rod Arrays
,”
Nucl. Eng. Des.
,
30
(
2
), pp.
214
222
. 10.1016/0029-5493(74)90166-6
42.
Garnier
,
J.
,
Manon
,
E.
, and
Cubizolles
,
G.
,
2001
, “
Local Measurements on Flow Boiling of Refrigerant 12 in a Vertical Tube
,”
Multiphase Sci. Technol.
,
13
(
1–2
), pp.
1
111
. 10.1615/MultScienTechn.v13.i1-2.10
You do not currently have access to this content.