Abstract

A single-stage vapor compression refrigeration system becomes inefficient and impractical when the temperature lift between the evaporator and the condenser becomes large. Under the high-temperature lift, different losses in the system increase, and more refrigerant vapor is formed at the end of the throttling process. The authors have attempted to analyze a vapor compression refrigeration system with a dedicated subcooler for high-temperature lift applications using R134a in the main cycle and four low global warming potential (GWP) refrigerants in the subcooler cycle. The modeling of the proposed system has been carried out in Engineering Equation Solver (EES) considering the energy, exergy, and economic aspects for the simulation of the system. The predicted results show that the use of the proposed system is more beneficial from both performance and economic point of view for high-temperature lift. Nearly 27% improvement in both energetic and exergetic performances are noted whereas cost is reduced by 2% when the proposed system is used instead of a typical refrigeration system. Finally, the present investigation concludes that the use of refrigerant R1234ze is much efficient than the other investigated refrigerants due to its low GWP and compressor discharge temperature, in spite of achieving better thermo-economic performances using R152a as subcooler refrigerant.

References

1.
Coulomb
,
D.
,
Dupont
,
J. L.
, and
Pichard
,
A.
,
2015
,
The Role of Refrigeration in the Global Economy
,
International Institute of Refrigeration
,
Paris, France
.
2.
Thornton
,
J. W.
,
Klein
,
S. A.
, and
Mitchell
,
J. W.
,
1994
, “
Dedicated Mechanical Subcooling Design Strategies for Supermarket Applications
,”
Int. J. Refrig.
,
17
(
8
), pp.
508
515
. 10.1016/0140-7007(94)90026-4
3.
Zubair
,
S. M.
,
1990
, “
Improvement of Refrigeration/air-Conditioning Performance With Mechanical sub-Cooling
,”
Energy
,
15
(
5
), pp.
427
433
. 10.1016/0360-5442(90)90039-5
4.
Zubair
,
S. M.
,
1994
, “
Thermodynamics of a Vapor-Compression Refrigeration Cycle With Mechanical Subcooling
,”
Energy
,
19
(
6
), pp.
707
715
. 10.1016/0360-5442(94)90009-4
5.
Zubair
,
S. M.
,
Yaqub
,
M.
, and
Khan
,
S. H.
,
1996
, “
Second-law-Based Thermodynamic Analysis of two-Stage and Mechanical-Subcooling Refrigeration Cycles
,”
Int. J. Refrig.
,
19
(
8
), pp.
506
516
. 10.1016/S0140-7007(96)00045-X
6.
Khan
,
J. U. R.
, and
Zubair
,
S. M.
,
2000
, “
Design and Rating of Dedicated Mechanical-Subcooling Vapour Compression Refrigeration Systems
,”
Proc. Inst. Mech. Eng., Part A
,
214
(
5
), pp.
455
471
. 10.1243/0957650001538010
7.
Couvillion
,
R. J.
,
Larson
,
M. W.
, and
Somerville
,
M. H.
,
1988
, “
Analysis of a Vapor-Compression Refrigeration System With Mechanical Subcooling
,”
ASHRAE Trans.
,
94
, pp.
641
660
.
8.
Khan
,
J. U. R.
, and
Zubair
,
S. M.
,
2000
, “
Design and Rating of an Integrated Mechanical-Subcooling Vapor-Compression Refrigeration System
,”
Energy Convers. Manage.
,
41
(
11
), pp.
1201
1222
. 10.1016/S0196-8904(99)00169-7
9.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2012
, “
The Effect of Refrigerant Combinations on Performance of a Vapor Compression Refrigeration System With Dedicated Mechanical sub-Cooling
,”
Int. J. Refrig.
,
35
(
1
), pp.
47
57
. 10.1016/j.ijrefrig.2011.09.009
10.
Ibáñez
,
J. G.
,
Ochoa
,
G. V.
, and
Chamorro
,
M. V.
,
2013
, “
Design of a Mechanical Subcooling System Device for Increasing a low Temperature Refrigeration System's Capacity
,”
Prospectiva
,
11
(
2
), pp.
13
20
. 10.15665/rp.v11i2.33
11.
Qureshi
,
B. A.
,
Inam
,
M.
,
Antar
,
M. A.
, and
Zubair
,
S. M.
,
2013
, “
Experimental Energetic Analysis of a Vapor Compression Refrigeration System with Dedicated Mechanical sub-Cooling
,”
Appl. Energy
,
102
, pp.
1035
1041
. 10.1016/j.apenergy.2012.06.007
12.
She
,
X.
,
Yin
,
Y.
, and
Zhang
,
X.
,
2014
, “
A Proposed Subcooling Method for Vapor Compression Refrigeration Cycle Based on Expansion Power Recovery
,”
Int. J. Refrig.
,
43
, pp.
50
61
. 10.1016/j.ijrefrig.2014.03.008
13.
Llopis
,
R.
,
Cabello
,
R.
,
Sánchez
,
D.
, and
Torrella
,
E.
,
2015
, “
Energy Improvements of CO2 Transcritical Refrigeration Cycles Using Dedicated Mechanical Subcooling
,”
Int. J. Refrig.
,
55
, pp.
129
141
. 10.1016/j.ijrefrig.2015.03.016
14.
Llopis
,
R.
,
Nebot-Andrés
,
L.
,
Cabello
,
R.
,
Sánchez
,
D.
, and
Catalán-Gil
,
J.
,
2016
, “
Experimental Evaluation of a CO2 Transcritical Refrigeration Plant With Dedicated Mechanical Subcooling
,”
Int. J. Refrig.
,
69
, pp.
361
368
. 10.1016/j.ijrefrig.2016.06.009
15.
Dai
,
B.
,
Liu
,
S.
,
Sun
,
Z.
, and
Ma
,
Y.
,
2017
, “
Thermodynamic Performance Analysis of CO2 Transcritical Refrigeration Cycle Assisted With Mechanical Subcooling
,”
Energy Procedia
,
105
, pp.
2033
2038
. 10.1016/j.egypro.2017.03.579
16.
Nebot-Andres
,
L.
,
Llopis
,
R.
,
Sánchez
,
D.
,
Catalán-Gil
,
J.
, and
Cabello
,
R.
,
2017
, “
CO2 With Mechanical Subcooling vs. CO2 Cascade Cycles for Medium Temperature Commercial Refrigeration Applications Thermodynamic Analysis
,”
Appl. Sci.
,
7
(
9
), p.
955
. 10.3390/app7090955
17.
Agarwal
,
S.
,
Arora
,
A.
, and
Arora
,
B. B.
,
2020
, “Exergy Analysis of Dedicated Mechanically Subcooled Vapour Compression Refrigeration Cycle Using HFC-R134a, HFO-R1234ze and R1234yf,”
Advances in Energy and Built Environment
,
Springer
,
Singapore
, pp.
23
42
.
18.
Agarwal
,
S.
,
Arora
,
A.
, and
Arora
,
B. B.
,
2019
, “
Thermodynamic Performance Analysis of Dedicated Mechanically Subcooled Vapour Compression Refrigeration System
,”
J. Therm. Eng.
,
5
(
4
), pp.
222
236
. 10.18186/thermal.581741
19.
Ansari
,
N. A.
,
Arora
,
A.
, and
Manjunath
,
K.
,
2020
, “The Effect of Eco-Friendly Refrigerants on Performance of Vapor Compression Refrigeration System with Dedicated Mechanical Subcooling,”
Advances in Energy and Built Environment
,
Springer
,
Singapore
, pp.
43
54
.
20.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2013
, “
Mechanical sub-Cooling Vapor Compression Systems: Current Status and Future Directions
,”
Int. J. Refrig.
,
36
(
8
), pp.
2097
2110
. 10.1016/j.ijrefrig.2013.07.026
21.
Emani
,
M. S.
,
Roy
,
R.
, and
Mandal
,
B. K.
,
2017
, “
Development of Refrigerants: a Brief Review
,”
Indian J. Sci. Res
,
14
(
2
), pp.
175
181
.
22.
Klein
,
S. A.
, and
Alvarado
,
F. L.
,
1992
, “
EES: Engineering equation solver for the Microsoft Windows operating system
”,
F-Chart software
.
23.
Roy
,
R.
, and
Mandal
,
B. K.
,
2017
, “
Thermodynamic Analysis of a Vapour Compression Refrigeration System Integrated With a Subcooler Cycle
,”
Int. J. Renew. Energy Technol.
,
8
(
3–4
), pp.
334
345
. 10.1504/IJRET.2017.088982
24.
Calm
,
J. M.
, and
Hourahan
,
G. C.
,
2001
, “
Refrigerant Data Summary
,”
Eng. Syst.
,
18
(
11
), pp.
74
77
.
25.
Roy
,
R.
, and
Mandal
,
B. K.
,
2019
, “
Energetic and Exergetic Performance Comparison of Cascade Refrigeration System Using R170-R161 and R41-R404A as Refrigerant Pairs
,”
Heat Mass Transfer
,
55
(
3
), pp.
723
731
. 10.1007/s00231-018-2455-7
26.
Roy
,
R.
, and
Mandal
,
B. K.
,
2020
, “
Thermo-Economic Analysis and Multi-Objective Optimization of Vapour Cascade Refrigeration System Using Different Refrigerant Combinations
,”
J. Therm. Anal. Calorim.
,
139
(
5
), pp.
3247
3261
. 10.1007/s10973-019-08710-x
27.
Chowdhury
,
S.
,
Roy
,
R.
, and
Mandal
,
B. K.
,
2019
, “
A Review on Energy and Exergy Analysis of two-Stage Vapour Compression Refrigeration System
,”
Int. J. Air-Cond. Refrig.
,
27
(
02
), p.
1930001
. 10.1142/S2010132519300015
28.
Roy
,
R.
,
Bhowal
,
A. J.
, and
Mandal
,
B. K.
,
2020
, “
Exergy and Cost Optimization of a Two-Stage Refrigeration System Using Refrigerant R32 and R410A
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031024
. 10.1115/1.4046253
29.
Arora
,
A.
, and
Kaushik
,
S. C.
,
2008
, “
Theoretical Analysis of a Vapour Compression Refrigeration System With R502, R404A and R507A
,”
Int. J. Refrig.
,
31
(
6
), pp.
998
1005
. 10.1016/j.ijrefrig.2007.12.015
30.
Sun
,
Z.
,
Liang
,
Y.
,
Liu
,
S.
,
Ji
,
W.
,
Zang
,
R.
,
Liang
,
R.
, and
Guo
,
Z.
,
2016
, “
Comparative Analysis of Thermodynamic Performance of a Cascade Refrigeration System for Refrigerant Couples R41/R404A and R23/R404A
,”
Appl. Energy
,
184
, pp.
19
25
. 10.1016/j.apenergy.2016.10.014
31.
Roy
,
R.
, and
Mandal
,
B. K.
,
2018
, “
Exergy Analysis of Cascade Refrigeration System Working With Refrigerant Pairs R41-R404A and R41-R161
,”
IOP Conference Series: Materials Science and Engineering IOP Publishing
,
377
(
1
), p.
012036
. 10.1088/1757-899X/377/1/012036
32.
Dincer
,
I.
,
Rosen
,
M. A.
, and
Ahmadi
,
P.
,
2017
,
Optimization of Energy Systems
,
Wiley
,
New York
.
33.
Mosaffa
,
A. H.
,
Farshi
,
L. G.
,
Ferreira
,
C. I.
, and
Rosen
,
M. A.
,
2016
, “
Exergoeconomic and Environmental Analyses of CO2/NH3 Cascade Refrigeration Systems Equipped With Different Types of Flash Tank Intercoolers
,”
Energy Convers. Manage.
,
117
, pp.
442
453
. 10.1016/j.enconman.2016.03.053
34.
Wang
,
J.
,
Zhai
,
Z. J.
,
Jing
,
Y.
, and
Zhang
,
C.
,
2010
, “
Particle Swarm Optimization for Redundant Building Cooling Heating and Power System
,”
Appl. Energy
,
87
(
12
), pp.
3668
3679
. 10.1016/j.apenergy.2010.06.021
35.
Han
,
X. H.
,
Qiu
,
Y.
,
Li
,
P.
,
Xu
,
Y. J.
,
Wang
,
Q.
, and
Chen
,
G. M.
,
2012
, “
Cycle Performance Studies on HFC-161 in a Small-Scale Refrigeration System as an Alternative Refrigerant to HFC-410A
,”
Energy Build.
,
44
, pp.
33
38
. 10.1016/j.enbuild.2011.10.004
36.
Vali
,
S. S.
,
Setty
,
T. P.
, and
Babu
,
A.
,
2018
, “
Analytical Computation of Thermodynamic Performance Parameters of Actual Vapour Compression Refrigeration System With R22, R32, R134a, R152a, R290 and R1270
,”
MATEC Web Conf. EDP Sci.
,
144
, p.
04009
. 10.1051/matecconf/201814404009
You do not currently have access to this content.