Abstract

Experiments were conducted to evaluate the thermal entropy generation, frictional entropy generation, and exergy efficiency of reduced graphene oxide (rGO)–Fe3O4–TiO2 hybrid nanofluid flow in a circular tube under laminar flow. The ternary nanoparticles were synthesized using the sol–gel technique and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The stable ethylene glycol-based ternary hybrid nanofluid was prepared and its thermophysical properties, heat transfer, friction factor, and pumping power at various values of particle weight concentrations (0.05–0.2%) and Reynolds number (211–2200) were studied experimentally. Nusselt number, heat transfer coefficient, friction factor, and exergy efficiency augment with increasing values of particle loading and Reynolds number. Results show the thermal conductivity and viscosity increase, as compared to the base fluid, by 10.6% and 108.3% at ψ = 0.2% and 60 °C. Similarly, for ψ = 0.2% and Reynolds number of 1548, and in comparison to the base fluid data, the Nusselt number and heat transfer coefficient enhancement are 17.78% and 24.76%, respectively, the thermal entropy generation reduction is 19.85%, and the exergy efficiency enhancement is 6.23%. At Reynolds number of 221.1, the rise in pressure drop, pumping power, and friction factor is 13.65%, 11.33%, and 16%, respectively, for ψ = 0.2% as compared to the base fluid data. The overall thermal performance of the system is enhanced by 14.32%. New equations are developed for the evaluation of the thermophysical properties, Nusselt number, and friction factor.

References

1.
Mcquiston
,
F. C.
,
Parker
,
J. D.
, and
Spitler
,
J. D.
,
2000
,
Heating, Ventilating, and Air Conditioning
,
John Wiley & Sons Inc
,
New York
.
2.
American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.
,
2005
,
ASHRAE Handbook. Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.
,
Atlanta, GA
.
3.
Kulkarni
,
D. P.
,
Das
,
D. K.
, and
Vajjha
,
R. S.
,
2009
, “
Application of Nanofluids in Heating Buildings and Reducing Pollution
,”
Appl. Energy
,
86
(
12
), pp.
2566
2573
. 10.1016/j.apenergy.2009.03.021
4.
Liu
,
C.
,
Zhang
,
T.
,
Lv
,
B.
,
Qiao
,
Y.
, and
Rao
,
Z.
,
2020
, “
Preparation and Thermo-Physical Properties of Stable Graphene/Water Nanofluids for Thermal Management
,”
J. Mol. Liq.
,
319
, p.
114165
. 10.1016/j.molliq.2020.114165
5.
Salman
,
S. V.
,
Talib
,
A. R. A.
,
Saadon
,
S.
, and
Sultan
,
M. T. H.
,
2020
, “
Hybrid Nanofluid Flow and Heat Transfer Over Backward and Forward Steps: A Review
,”
Powder Technol.
,
363
, pp.
448
472
. 10.1016/j.powtec.2019.12.038
6.
Moghadasi
,
H.
,
Aminian
,
E.
,
Saffari
,
H.
,
Mahjoorghani
,
M.
, and
Emamifar
,
A.
,
2020
, “
Numerical Analysis on Laminar Forced Convection Improvement of Hybrid Nanofluid Within a U-Bend Pipe in Porous Media
,”
Int. J. Mech. Sci.
,
179
, p.
105659
. 10.1016/j.ijmecsci.2020.105659
7.
Huminic
,
G.
, and
Huminic
,
A.
,
2018
, “
Heat Transfer Capability of the Hybrid Nanofluids for Heat Transfer Applications
,”
J. Mol. Liq.
,
272
, pp.
857
870
. 10.1016/j.molliq.2018.10.095
8.
Onyiriuka
,
E. J.
,
Obanor
,
A. I.
,
Mahdavi
,
M.
, and
Ewim
,
D. R. E.
,
2018
, “
Evaluation of Single-Phase, Discrete, Mixture and Combined Model of Discrete and Mixture Phases in Predicting Nanofluid Heat Transfer Characteristics for Laminar and Turbulent Flow Regimes
,”
Adv. Powder Technol.
,
29
(
11
), pp.
2644
2657
. 10.1016/j.apt.2018.07.013
9.
Urmi
,
W. T.
,
Rahman
,
M. M.
, and
Hamzah
,
W. A. W.
,
2020
, “
An Experimental Investigation on the Thermophysical Properties of 40% Ethylene Glycol Based TiO2–Al2O3 Hybrid Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104663
. 10.1016/j.icheatmasstransfer.2020.104663
10.
Van Trinh
,
P.
,
Anh
,
N. N.
,
Hong
,
N. T.
,
Hong
,
P. N.
,
Minh
,
P. N.
, and
Thang
,
B. H.
,
2018
, “
Experimental Study on the Thermal Conductivity of Ethylene Glycol-Based Nanofluid Containing Gr–CNT Hybrid Material
,”
J. Mol. Liq.
,
269
, pp.
344
353
. 10.1016/j.molliq.2018.08.071
11.
Yan
,
S.-R.
,
Toghraie
,
D.
,
Abdulkareem
,
L. A.
,
Alizadeh
,
A.
,
Barnoon
,
P.
, and
Afrand
,
M.
,
2020
, “
The Rheological Behavior of MWCNTs–ZnO/Water–Ethylene Glycol Hybrid Non-Newtonian Nanofluid by Using of an Experimental Investigation
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
8401
8406
. 10.1016/j.jmrt.2020.05.018
12.
Boroomandpour
,
A.
,
Toghraie
,
D.
, and
Hashemian
,
M.
,
2020
, “
A Comprehensive Experimental Investigation of Thermal Conductivity of a Ternary Hybrid Nanofluid Containing MWCNTs–Titania–Zinc Oxide/Water–Ethylene Glycol (80:20) as Well as Binary and Mono Nanofluids
,”
Synth. Met.
,
268
, p.
116501
. 10.1016/j.synthmet.2020.116501
13.
Alade
,
I. O.
,
Rahman
,
M. A. A.
, and
Saleh
,
T. A.
,
2020
, “
An Approach to Predict the Isobaric Specific Heat Capacity of Nitrides/Ethylene Glycol-Based Nanofluids Using Support Vector Regression
,”
J. Energy Storage
,
29
, p.
101313
. 10.1016/j.est.2020.101313
14.
Akilu
,
S.
,
Baheta
,
A. T.
,
Said
,
M. A. M.
,
Minea
,
A. A.
, and
Sharma
,
K. V.
,
2018
, “
Properties of Glycerol and Ethylene Glycol Mixture Based SiO2–CuO/C Hybrid Nanofluid for Enhanced Solar Energy Transport
,”
Sol. Energy Mater. Sol. Cells
,
179
, pp.
118
128
. 10.1016/j.solmat.2017.10.027
15.
Jamei
,
M.
,
Pourrajab
,
R.
,
Ahmadianfar
,
I.
, and
Noghrehabadi
,
A.
,
2020
, “
Accurate Prediction of Thermal Conductivity of Ethylene Glycol-Based Hybrid Nanofluids Using Artificial Intelligence Techniques
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104624
. 10.1016/j.icheatmasstransfer.2020.104624
16.
Akilu
,
S.
,
Baheta
,
A. T.
, and
Sharma
,
K. V.
,
2017
, “
Experimental Measurements of Thermal Conductivity and Viscosity of Ethylene Glycol-Based Hybrid Nanofluid With TiO2–CuO/C Inclusions
,”
J. Mol. Liq.
,
246
, pp.
396
405
. 10.1016/j.molliq.2017.09.017
17.
Akhgar
,
A.
,
Toghraie
,
D.
,
Sina
,
N.
, and
Afrand
,
M.
,
2019
, “
Developing Dissimilar Artificial Neural Networks (ANNs) to Prediction the Thermal Conductivity of MWCNT–TiO2/Water–Ethylene Glycol Hybrid Nanofluid
,”
Powder Technol.
,
355
, pp.
602
610
. 10.1016/j.powtec.2019.07.086
18.
Nawaz
,
M.
,
Nazir
,
U.
,
Saleem
,
S.
, and
Alharbi
,
S. O.
,
2020
, “
An Enhancement of Thermal Performance of Ethylene Glycol by Nano and Hybrid Nanoparticles
,”
Phys. A
,
551
, p.
124527
. 10.1016/j.physa.2020.124527
19.
Afrand
,
M.
,
2017
, “
Experimental Study on Thermal Conductivity of Ethylene Glycol Containing Hybrid Nano-Additives and Development of a New Correlation
,”
Appl. Therm. Eng.
,
110
, pp.
1111
1119
. 10.1016/j.applthermaleng.2016.09.024
20.
Sundar
,
L. S.
,
Ramana
,
E. V.
,
Graça
,
M. P. F.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2016
, “
Nanodiamond-Fe3O4 Nanofluids: Preparation and Measurement of Viscosity, Electrical and Thermal Conductivities
,”
Int. Commun. Heat Mass Transfer
,
73
, pp.
62
74
. 10.1016/j.icheatmasstransfer.2016.02.013
21.
Sahoo
,
R. R.
, and
Kumar
,
V.
,
2020
, “
Development of a New Correlation to Determine the Viscosity of Ternary Hybrid Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
111
, p.
104451
. 10.1016/j.icheatmasstransfer.2019.104451
22.
Hamid
,
K. A.
,
Azmi
,
W. H.
,
Nabil
,
M. F.
, and
Mamat
,
R.
,
2017
, “
Improved Thermal Conductivity of TiO2–SiO2 Hybrid Nanofluid in Ethylene Glycol and Water Mixture
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
257
, p.
012067
. 10.1088/1757-899X/257/1/012067
23.
Oliveira
,
L. R.
,
Ribeiro
,
S. R. F. L.
,
Reis
,
M. H. M.
,
Cardoso
,
V. L.
, and
Filho
,
E. P. B.
,
2019
, “
Experimental Study on the Thermal Conductivity and Viscosity of Ethylene Glycol-Based Nanofluid Containing Diamond-Silver Hybrid Material
,”
Diamond Relat. Mater.
,
96
, pp.
216
230
. 10.1016/j.diamond.2019.05.004
24.
Taherialekouhi
,
R.
,
Rasouli
,
S.
, and
Khosravi
,
A.
,
2019
, “
An Experimental Study on Stability and Thermal Conductivity of Water–Graphene Oxide/Aluminum Oxide Nanoparticles as a Cooling Hybrid Nanofluid
,”
Int. J. Heat Mass Transfer
,
145
, p.
118751
. 10.1016/j.ijheatmasstransfer.2019.118751
25.
Soltani
,
O.
, and
Akbari
,
M.
,
2016
, “
Effects of Temperature and Particles Concentration on the Dynamic Viscosity of MgO–MWCNT/Ethylene Glycol Hybrid Nanofluid: Experimental Study
,”
Phys. E
,
84
, pp.
564
570
. 10.1016/j.physe.2016.06.015
26.
Nine
,
M. J.
,
Batmunkh
,
M.
,
Kim
,
J. H.
,
Chung
,
H. S.
, and
Jeong
,
H. M.
,
2012
, “
Investigation of Al2O3–MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization
,”
J. Nanosci. Nanotechnol.
,
12
(
6
), pp.
4553
4559
. 10.1166/jnn.2012.6193
27.
Ma
,
M.
,
Zhai
,
Y.
,
Yao
,
P.
,
Li
,
Y.
, and
Wang
,
H.
,
2020
, “
Synergistic Mechanism of Thermal Conductivity Enhancement and Economic Analysis of Hybrid Nanofluids
,”
Powder Technol.
,
373
, pp.
702
715
. 10.1016/j.powtec.2020.07.020
28.
Vozniakovskii
,
A. A.
,
Koltsova
,
T. S.
,
Voznyakovskii
,
A. P.
,
Kumskov
,
A. L.
, and
Kidalov
,
S. V.
,
2020
, “
Powder Hybrid Nanomaterial: Detonation Nanodiamonds–Carbon Nanotubes and Its Stable Reversible Water Nanofluids
,”
J. Colloid Interface Sci.
,
565
, pp.
305
314
. 10.1016/j.jcis.2020.01.034
29.
Wole-Osho
,
I.
,
Okonkwo
,
E. C.
,
Kavaz
,
D.
, and
Abbasoglu
,
S.
,
2020
, “
An Experimental Investigation into the Effect of Particle Mixture Ratio on Specific Heat Capacity and Dynamic Viscosity of Al2O3–ZnO Hybrid Nanofluids
,”
Powder Technol.
,
363
, pp.
699
716
. 10.1016/j.powtec.2020.01.015
30.
Hussein
,
A. M.
,
2017
, “
Thermal Performance and Thermal Properties of Hybrid Nanofluid Laminar Flow in a Double Pipe Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
37
45
. 10.1016/j.expthermflusci.2017.05.015
31.
Saba
,
F.
,
Ahmed
,
N.
,
Khan
,
U.
, and
Mohyud-Din
,
S. T.
,
2019
, “
A Novel Coupling of (CNT–Fe3O4/H2O) Hybrid Nanofluid for Improvements in Heat Transfer for Flow in an Asymmetric Channel With Dilating/Squeezing Walls
,”
Int. J. Heat Mass Transfer
,
136
, pp.
186
195
. 10.1016/j.ijheatmasstransfer.2019.02.097
32.
Goudarzi
,
S.
,
Shekaramiz
,
M.
,
Omidvar
,
A.
,
Golab
,
E.
,
Karimipour
,
A.
, and
Karimipour
,
A.
,
2020
, “
Nanoparticles Migration Due to Thermophoresis and Brownian Motion and Its Impact on Ag–MgO/Water Hybrid Nanofluid Natural Convection
,”
Powder Technol.
,
375
, pp.
493
503
. 10.1016/j.powtec.2020.07.115
33.
George
,
J.
,
Sreeneesh
,
C.
,
Soorej
,
E. S.
,
Sreejitha
,
N.
,
Noona
,
C. A.
, and
Sreekanth
,
M. S.
,
2020
, “
Enhancement of Cooling Rate Using Nanofluid and Hybrid Nanofluid in Cooling Hot Titanium Plate
,”
Mater. Today Proc.
10.1016/j.matpr.2020.06.282
34.
Kumar
,
V.
, and
Sarkar
,
J.
,
2019
, “
Numerical and Experimental Investigations on Heat Transfer and Pressure Drop Characteristics of Al2O3–TiO2 Hybrid Nanofluid in Minichannel Heat Sink With Different Mixture Ratio
,”
Powder Technol.
,
345
, pp.
717
727
. 10.1016/j.powtec.2019.01.061
35.
Sahoo
,
R. R.
,
2020
, “
Thermo-Hydraulic Characteristics of Radiator With Various Shape Nanoparticle-Based Ternary Hybrid Nanofluid
,”
Powder Technol.
,
370
, pp.
19
28
. 10.1016/j.powtec.2020.05.013
36.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2018
, “
Turbulent Heat Transfer and Friction Factor of Nanodiamond-Nickel Hybrid Nanofluids Flow in a Tube: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
117
, pp.
223
234
. 10.1016/j.ijheatmasstransfer.2017.09.109
37.
Gupta
,
M.
,
Singh
,
V.
, and
Said
,
Z.
,
2020
, “
Heat Transfer Analysis Using Zinc Ferrite/Water (Hybrid) Nanofluids in a Circular Tube: An Experimental Investigation and Development of New Correlations for Thermophysical and Heat Transfer Properties
,”
Sustain. Energy Technol. Assess.
,
39
, p.
100720
. 10.1016/j.seta.2020.100720
38.
Saffarian
,
M. R.
,
Moravej
,
M.
, and
Doranehgard
,
M. H.
,
2020
, “
Heat Transfer Enhancement in a Flat Plate Solar Collector With Different Flow Path Shapes Using Nanofluid
,”
Renew. Energy
,
146
, pp.
2316
2329
. 10.1016/j.renene.2019.08.081
39.
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Xiong
,
Q.
,
2020
, “
CFD Study of Heat Transfer and Fluid Flow in a Parabolic Trough Solar Receiver With Internal Annular Porous Structure and Synthetic Oil–Al2O3 Nanofluid
,”
Renew. Energy
,
145
, pp.
2598
2614
. 10.1016/j.renene.2019.08.042
40.
Siavashi
,
M.
,
Karimi
,
K.
,
Xiong
,
Q.
, and
Doranehgard
,
M. H.
,
2019
, “
Numerical Analysis of Mixed Convection of Two-Phase Non-Newtonian Nanofluid Flow Inside a Partially Porous Square Enclosure With a Rotating Cylinder
,”
J. Therm. Anal. Calorim.
,
137
(
1
), pp.
267
287
. 10.1007/s10973-018-7945-9
41.
Ali
,
H. M.
,
2020
, “
Recent Advancements in PV Cooling and Efficiency Enhancement Integrating Phase Change Materials Based Systems—A Comprehensive Review
,”
Sol. Energy
,
197
, pp.
163
198
. 10.1016/j.solener.2019.11.075
42.
Ali
,
H. M.
,
2020
,
Hybrid Nanofluids for Convection Heat Transfer
, 1st ed., Chap. 4.
Academic Press
,
London
, pp.
147
177
.
43.
Sriharan
,
G.
,
Harikrishnan
,
S.
, and
Ali
,
H. M.
,
2020
, “
Experimental Investigation on the Effectiveness of MHTHS Using Different Metal Oxide-Based Nanofluids
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09779-5
44.
Khalid
,
S. U.
,
Babar
,
H.
,
Ali
,
H. M.
,
Janjua
,
M. M.
, and
Ali
,
M. A.
,
2020
, “
Heat Pipes: Progress in Thermal Performance Enhancement for Microelectronics
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09820-7
45.
Shahsavar
,
A.
,
Ali
,
H. M.
,
Mahani
,
R. B.
, and
Talebizadehsardari
,
P.
,
2020
, “
Numerical Study of Melting and Solidification in a Wavy Double-Pipe Latent Heat Thermal Energy Storage System
,”
J. Therm. Anal. Calorim.
,
141
(
5
), pp.
1785
1799
. 10.1007/s10973-020-09864-9
46.
Muneeshwaran
,
M.
,
Sajjad
,
U.
,
Ahmed
,
T.
,
Amer
,
M.
,
Ali
,
H. M.
, and
Wang
,
C.-C.
, “
Performance Improvement of Photovoltaic Modules Via Temperature Homogeneity Improvement
,”
Energy
,
203
, p.
117816
. 10.1016/j.energy.2020.117816
47.
Tariq
,
H. A.
,
Anwar
,
M.
,
Malik
,
A.
, and
Ali
,
H. M.
,
2020
, “
Hydro-Thermal Performance of Normal-Channel Facile Heat Sink Using TiO2–H2O Mixture (Rutile–Anatase) Nanofluids for Microprocessor Cooling
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09838-x
48.
Chen
,
A.
,
Lin
,
T. F.
,
Ali
,
H. M.
, and
Yan
,
W.-M.
,
2020
, “
Experimental Study on Bubble Characteristics of Time Periodic Subcooled Flow Boiling in Annular Ducts Due to Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
157
, p.
119974
. 10.1016/j.ijheatmasstransfer.2020.119974
49.
Ghaneifar
,
M.
,
Raisi
,
A.
,
Ali
,
H. M.
, and
Talebizadehsardari
,
P.
,
2020
, “
Mixed Convection Heat Transfer of Al2O3 Nanofluid in a Horizontal Channel Subjected With Two Heat Sources
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09887-2
50.
Venkatesha
,
N.
,
Poojar
,
P.
,
Qurishi
,
Y.
,
Geethanath
,
S.
, and
Srivastava
,
C.
,
2015
, “
Graphene Oxide–Fe3O4 Nanoparticle Composite With High Transverse Proton Relaxivity Value for Magnetic Resonance Imaging
,”
J. Appl. Phys.
,
117
(
15
), p.
154702
. 10.1063/1.4918605
51.
Hanh
,
N. T.
,
Xuyen
,
N. T.
, and
Thuy
,
T. T. T.
,
2018
, “
Synthesis and Characterization of Fe3O4/GO Nanocomposite for Drug Carrier
,”
Vietnam J. Chem.
,
56
(
5
), pp.
642
646
. 10.1002/vjch.201800063
52.
Yadav
,
M.
,
Rhee
,
K. Y.
,
Park
,
S. J.
, and
Hui
,
D.
,
2014
, “
Mechanical Properties of Fe3O4/GO/Chitosan Composites
,”
Compos. Part B
,
66
, pp.
89
96
. 10.1016/j.compositesb.2014.04.034
53.
Yang
,
X.
,
Zhou
,
T.
,
Ren
,
B.
,
Shi
,
Z.
, and
Hursthouse
,
A.
,
2017
, “
Synthesis, Characterization, and Adsorptive Properties of Fe3O4/GO Nanocomposites for Antimony Removal
,”
J. Anal. Methods Chem.
, p.
3012364
. 10.1155/2017/3012364
54.
Gonzalez-Rodriguez
,
R.
,
Campbell
,
E.
, and
Naumov
,
A.
,
2019
, “
Multifunctional Graphene Oxide/Iron Oxide Nanoparticles for Magnetic Targeted Drug Delivery Dual Magnetic Resonance/Fluorescence Imaging and Cancer Sensing
,”
PLoS One
,
14
(
6
), p.
0217072
. 10.1371/journal.pone.0217072
55.
Barai
,
D. P.
,
Bhanvase
,
B. A.
, and
Saharan
,
V. K.
,
2019
, “
Reduced Graphene Oxide-Fe3O4 Nanocomposite Based Nanofluids: Study on Ultrasonic Assisted Synthesis, Thermal Conductivity, Rheology, and Convective Heat Transfer
,”
Ind. Eng. Chem. Res
,
58
(
19
), pp.
8349
8369
. 10.1021/acs.iecr.8b05733
56.
Vinodha
,
G.
,
Cindrella
,
L.
,
Sithara
,
V.
,
Philip
,
J.
, and
Shima
,
P. D.
,
2018
, “
Synthesis, Characterization, Thermal Conductivity and Rheological Studies in Magnetite-Decorated Graphene Oxide Nanofluids
,”
J. Nanofluids
,
7
(
1
), pp.
11
20
. 10.1166/jon.2018.1435
57.
Saleh
,
R.
,
Putra
,
N.
,
Wibowo
,
R. E.
,
Septiadi
,
W. N.
, and
Prakoso
,
S. P.
,
2014
, “
Titanium Dioxide Nanofluids for Heat Transfer Applications
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
19
29
. 10.1016/j.expthermflusci.2013.08.018
58.
Cakmak
,
N. K.
,
Said
,
Z.
,
Sundar
,
L. S.
,
Ali
,
M. H.
, and
Tiwari
,
A. K.
,
2020
, “
Preparation, Characterization, Stability, and Thermal Conductivity of rGO–Fe3O4–TiO2 Hybrid Nanofluid: An Experimental Study
,”
Powder Technol.
,
372
, pp.
235
245
. 10.1016/j.powtec.2020.06.012
59.
Maity
,
D.
,
Ding
,
J.
, and
Xue
,
J.-M.
,
2008
, “
Synthesis of Magnetite Nanoparticles by Thermal Decomposition: Time, Temperature, Surfactant and Solvent Effects
,”
Funct. Mater. Lett.
,
1
(
3
), pp.
189
193
. 10.1142/S1793604708000381
60.
Banerjee
,
S.
,
Benjwal
,
P.
,
Singh
,
M.
, and
Kar
,
K. K.
,
2018
, “
Graphene Oxide (rGO)–Metal Oxide (TiO2/Fe3O4) Based Nanocomposites for the Removal of Methylene Blue
,”
Appl. Surf. Sci.
,
439
, pp.
560
568
. 10.1016/j.apsusc.2018.01.085
61.
Sumi
,
V.
,
Meera
,
M.
,
Sha
,
M. A.
, and
Shibli
,
S.
,
2020
, “
Effect of rGO on Fe2O3–TiO2 Composite Incorporated Nip Coating for Boosting Hydrogen Evolution Reaction in Alkaline Solution
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
2460
2477
. 10.1016/j.ijhydene.2019.11.167
62.
Baghchesara
,
M. A.
,
Azimi
,
H.
,
Shiravizadeh
,
A. G.
,
Teridi
,
M. A. M.
, and
Yousefi
,
R.
,
2019
, “
Improving the Intrinsic Properties of rGO Sheets by S-Doping and the Effects of rGO Improvements on the Photocatalytic Performance of Cu3Se2/rGO Nanocomposites
,”
Appl. Surf. Sci.
,
466
, pp.
401
410
. 10.1016/j.apsusc.2018.10.082
63.
Scherrer
,
P.
,
1918
, “
Bestimmung Der Größe Und Der Inneren Struktur Von Kolloidteilchen Mittels Röntgenstrahlen
,”
Göttinger Nachrichten Gesell
,
2
, pp.
98
100
. 10.1007/978-3-662-33915-2_7
64.
Zhang
,
H.
,
Lv
,
X.
,
Li
,
Y.
,
Wang
,
Y.
, and
Li
,
J.
,
2010
, “
P25-Graphene Composite as a High Performance Photocatalyst
,”
ACS Nano
,
4
(
1
), pp.
380
386
. 10.1021/nn901221k
65.
Listanti
,
A.
,
Taufiq
,
A.
,
Hidayat
,
A.
,
Hidayat
,
N.
,
Susanto
,
H.
, and
Soontaranon
,
S.
,
2019
, “
Synthesis, Structural and Toxicity Characters of Nano-Sized Titanium Dioxide/Magnetite Nanoparticles
,”
IOP Conference Series: Materials Science and Engineering
,
Indonesia
,
Sept. 5
,
IOP Publishing
, p.
012057
.
66.
Angayarkanni
,
S.
, and
Philip
,
J.
,
2015
, “
Review on Thermal Properties of Nanofluids: Recent Developments
,”
Adv. Colloid Interface Sci.
,
225
, pp.
146
176
. 10.1016/j.cis.2015.08.014
67.
Wang
,
X.
, and
Jing
,
D.
,
2020
, “
Role of Solid–Liquid Interaction Energy on Anomalous Thermal Conductivity Enhancement in Well-Dispersed Dilute Nanofluids Studied by Equilibrium Molecular Dynamics
,”
Chem. Phys.
,
539
, p.
110943
. 10.1016/j.chemphys.2020.110943
68.
Ambreen
,
T.
, and
Kim
,
M.-H.
,
2020
, “
Influence of Particle Size on the Effective Thermal Conductivity of Nanofluids: A Critical Review
,”
Appl. Energy
,
264
, p.
114684
. 10.1016/j.apenergy.2020.114684
69.
Żyła
,
G.
, and
Fal
,
J.
,
2016
, “
Experimental Studies on Viscosity, Thermal and Electrical Conductivity of Aluminum Nitride–Ethylene Glycol (AlN–EG) Nanofluids
,”
Thermochim. Acta
,
637
, pp.
11
16
. 10.1016/j.tca.2016.05.006
70.
Raud
,
R.
,
Hosterman
,
B.
,
Diana
,
A.
,
Steinberg
,
T. A.
, and
Will
,
G.
,
2017
, “
Experimental Study of the Interactivity, Specific Heat, and Latent Heat of Fusion of Water Based Nanofluids
,”
Appl. Therm. Eng
,
117
, pp.
164
168
. 10.1016/j.applthermaleng.2017.02.033
71.
Shah
,
R.
,
1978
, “
A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Ducts
,”
J. Fluid Eng.
,
100
(
2
), pp.
177
179
. 10.1115/1.3448626
72.
Hussanan
,
A.
,
Qasim
,
M.
, and
Chen
,
Z.-M.
,
2020
, “
Heat Transfer Enhancement in Sodium Alginate Based Magnetic and Non-Magnetic Nanoparticles Mixture Hybrid Nanofluid
,”
Phys. A
,
550
, p.
123957
. 10.1016/j.physa.2019.123957
73.
Dalkılıç
,
A. S.
,
Türk
,
O. A.
,
Mercan
,
H.
,
Nakkaew
,
S.
, and
Wongwises
,
S.
,
2019
, “
An Experimental Investigation on Heat Transfer Characteristics of Graphite–SiO2/Water Hybrid Nanofluid Flow in Horizontal Tube With Various Quad-Channel Twisted Tape Inserts
,”
Int. Commun. Heat Mass Transfer
,
107
, pp.
1
13
. 10.1016/j.icheatmasstransfer.2019.05.013
74.
Sundar
,
L. S.
,
Said
,
Z.
,
Saleh
,
B.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2020
, “
Combination of Co3O4 Deposited Rgo Hybrid Nanofluids and Longitudinal Strip Inserts: Thermal Properties, Heat Transfer, Friction Factor, and Thermal Performance Evaluations
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100695
. 10.1016/j.tsep.2020.100695
75.
Sundar
,
L. S.
,
Mesfin
,
S.
,
Ramana
,
E. V.
,
Said
,
Z.
, and
Sousa
,
A. C. M.
,
2021
, “
Experimental Investigation of Thermo-Physical Properties, Heat Transfer, Pumping Power, Entropy Generation, and Exergy Efficiency of Nanodiamond+Fe3O4/60:40% Water–Ethylene Glycol Hybrid Nanofluid Flow in a Tube
,”
Therm. Sci. Eng. Prog.
,
21
, p.
100799
. 10.1016/j.tsep.2020.100799
76.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
1998
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley & Sons
,
New York
.
77.
Huminic
,
G.
, and
Huminic
,
A.
,
2018
, “
The Heat Transfer Performances and Entropy Generation Analysis of Hybrid Nanofluids in a Flattened Tube
,”
Int. J. Heat Mass Transfer
,
119
, pp.
813
827
. 10.1016/j.ijheatmasstransfer.2017.11.155
78.
Bejan
,
A.
,
1988
,
Advanced Engineering Thermodynamics
,
Wiley Interscience
,
New York
.
79.
Stalin
,
P. M. J.
,
Arjunan
,
T. V.
,
Matheswaran
,
M. M.
,
Dolli
,
H.
, and
Sadanandam
,
N.
,
2019
, “
Energy, Economic and Environmental Investigation of a Flat Plate Solar Collector With CeO2/Water Nanofluid
,”
J. Therm. Anal. Calorim.
10.1007/s10973-019-08670-2
80.
Bahiraei
,
M.
,
Jamshidmofid
,
M.
, and
Dahari
,
M.
,
2020
, “
Second Law Analysis of Hybrid Nanofluid Flow in a Microchannel Heat Sink Integrated With Ribs and Secondary Channels for Utilization in Miniature Thermal Devices
,”
Chem. Eng. Process.
,
153
, p.
107963
. 10.1016/j.cep.2020.107963
81.
Ahammed
,
N.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2016
, “
Entropy Generation Analysis of Graphene–Alumina Hybrid Nanofluid in Multiport Minichannel Heat Exchanger Coupled With Thermoelectric Cooler
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1084
1097
. 10.1016/j.ijheatmasstransfer.2016.07.070
82.
Bergles
,
A. E.
,
Blumenkrantz
,
A. R.
, and
Taborek
,
J.
,
1974
, “
Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces
,”
ASME J. Heat Transfer
,
2
, pp.
239
243
. 10.1615/ihtc5.2130
83.
Ramalingam
,
S.
,
Dhairiyasamy
,
R.
, and
Govindasamy
,
M.
,
2020
, “
Assessment of Heat Transfer Characteristics and System Physiognomies Using Hybrid Nanofluids in an Automotive Radiator
,”
Chem. Eng. Process.
,
150
, p.
107886
. 10.1016/j.cep.2020.107886
84.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.