Abstract

Fixed-bed regenerators (FBRs) are air-to-air energy exchangers (AAEEs) used to reduce energy consumption in heating, ventilation, and air conditioning (HVAC) systems. Since energy savings are directly related to the effectiveness of FBRs, testing is essential to determine the effectiveness of FBRs for quality assurances and during product development. However, testing of full-scale FBRs has disadvantages such as requiring full-scale prototypes, a high volume of conditioned airflow, long tests, and large testing laboratories. The disadvantages are especially crucial during product development and can be overcome by small-scale testing provided the test data can be used to evaluate accurately full-scale FBRs. The major contribution of this paper is two new methodologies (one direct method and one predictive method) to determine the sensible effectiveness of full-scale FBRs from small-scale test data. In the direct method, the effectiveness of the full-scale FBR is determined directly from the small-scale test data, whereas in the predictive method the effectiveness is determined using the Wilson plot technique and a numerical model in addition to the small-scale test data. Both methods are shown to have uncertainties within the specified uncertainty limits required by testing standards and are applied to evaluate the influence of geometrical parameters (corrugation angle and corrugation depth) on the effectiveness of FBRs. The test methods and results will be useful in the design and development of FBRs for HVAC applications.

References

1.
Natural Resources Canada
,
2016
, “
Energy Efficiency Trends in Canada—1990 to 2013
,” pp.
1
51
. https://www.nrcan.gc.ca/maps-tools-and-publications/publications/energy-publications/10734, Accessed June 6, 2020.
2.
Mardiana-Idayu
,
A.
, and
Riffat
,
S. B.
,
2012
, “
Review on Heat Recovery Technologies for Building Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
2
), pp.
1241
1255
. 10.1016/j.rser.2011.09.026
3.
Natural Resources Canada
,
2011
, “
Codes Canada
,” https://nrc.canada.ca/en/certifications-evaluations-standards/codes-canada, Accessed April 10, 2020.
4.
ANSI/ASHRAE/IES
,
2019
,
Standard 90.1-2019–Energy Standard for Buildings Except Low-Rise Residential Buildings
,
American Society of Heating, Refrigerating, and Air-Conditioning Engineers
,
Atlanta, GA
.
5.
Ramin
,
H.
,
Krishnan
,
E.
, and
Simonson
,
C. J.
,
2019
, “
Fixed Bed Regenerators for HVAC Applications
,”
Proceedings of the 27th CANCAM
,
Sherbrooke
,
Canada, May 27–30
, pp.
1
6
.
6.
Stasiek
,
J.
,
Collins
,
M. W.
,
Ciofalo
,
M.
, and
Chew
,
P. E.
,
1996
, “
Investigation of Flow and Heat Transfer in Corrugated Passages—I. Experimental Results
,”
Int. J. Heat Mass Transfer
,
39
(
1
), pp.
149
164
. 10.1016/S0017-9310(96)85013-7
7.
Krishnan
,
E. N.
,
Ramin
,
H.
, and
Simonson
,
C. J.
,
2019
, “
Performance Testing of Fixed-Bed Regenerators for HVAC Applications
,”
Proceedings of the 2nd Pacific Rim Thermal Engineering Conference
,
Hawaii
,
Dec. 13–17
, pp.
1
5
.
8.
Kheiri
,
R.
,
Ghaebi
,
H.
,
Ebadollahi
,
M.
, and
Rostamzadeh
,
H.
,
2017
, “
Thermodynamic Modeling and Performance Analysis of Four New Integrated Organic Rankine Cycles (A Comparative Study)
,”
Appl. Therm. Eng.
,
122
, pp.
103
117
. 10.1016/j.applthermaleng.2017.04.150
9.
Ajdari
,
H. R. B.
, and
Sadrameli
,
S. M.
,
2015
, “Theoretical and Experimental Studies of a Thermal Regenerator for Heat Recovery in Aluminum Melting Furnaces,”
Light Metals 2015
,
M.
Hyland
, ed.,
Springer International Publishing
,
Cham
, pp.
439
443
.
10.
Huete
,
J.
,
Acuñas
,
A.
, and
Amallobieta
,
I.
,
2010
, “
Recent Advances in High Temperature Ceramic Regenerators for Externally Fired Gas Turbines. Theoretical and Experimental Results
,”
Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air
,
Glasgow, UK
,
June 14–18
, pp.
1
8
.
11.
Tempeff North America
,
2020
, “
The Dual Core Difference
,” https://www.tempeffnorthamerica.com/dual-core-heat-recovery/, Accessed May 17, 2020.
12.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill, Inc.
,
New York
.
13.
Yilmaz
,
T.
, and
Büyükalaca
,
O.
,
2003
, “
Design of Regenerative Heat Exchangers
,”
Heat Transfer Eng.
,
24
(
4
), pp.
32
38
. 10.1080/01457630304034
14.
Worsøe-Schmidt
,
P.
,
1991
, “
Effect of Fresh Air Purging on the Efficiency of Energy Recovery From Exhaust Air in Rotary Regenerators
,”
Int. J. Refrig.
,
14
(
4
), pp.
233
239
. 10.1016/0140-7007(91)90008-5
15.
Krishnan
,
E. N.
,
Ramin
,
H.
,
Annadurai
,
G.
, and
Simonson
,
C. J.
,
2020
, “
Influence of Plate Geometry on Sensible Effectiveness of Fixed-Bed Regenerators
,”
Proceedings of 7th International Conference on Fluid Flow, Heat and Mass Transfer
,
Nov.
, pp.
1
7
.
16.
Rabah
,
A. A.
,
Fekete
,
A.
, and
Kabelac
,
S.
,
2009
, “
Experimental Investigation on a Rotary Regenerator Operating at Low Temperatures
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041004
. 10.1115/1.4001543
17.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Advances in Heat Transfer, Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
18.
Gullapalli
,
V. S.
, and
Sundén
,
B.
,
2014
, “
CFD Simulation of Heat Transfer and Pressure Drop in Compact Brazed Plate Heat Exchangers
,”
Heat Transfer Eng.
,
35
(
4
), pp.
358
366
. 10.1080/01457632.2013.828557
19.
O’Brien
,
J. E.
, and
Sparrow
,
E. M.
,
1982
, “
Corrugated-Duct Heat Transfer, Pressure Drop, and Flow Visualization
,”
ASME J. Heat Transfer
,
104
(
3
), pp.
410
416
. 10.1115/1.3245108
20.
Sang
,
D. H.
,
Han
,
H. K.
,
Hyung
,
H. C.
, and
Seung
,
B. C.
,
2002
, “
Heat Transfer in Wavy Duct with Different Corrugation Angle
,”
ASME International Mechanical Engineering Congress and Exposition Proceedings
,
New Orleans, LA
,
Nov. 17–22
, pp.
63
70
.
21.
Dovic
,
D.
, and
Svaic
,
S.
,
2007
, “
Influence of Chevron Plates Geometry on Performances of Plate Heat Exchangers
,”
Teh. Vjesn.
,
14
, pp.
37
45
.
22.
Ochoa
,
A. D.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
,
2005
, “
A New Technique for Dynamic Heat Transfer Measurements and Flow Visualization Using Liquid Crystal Thermography
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
264
275
. 10.1016/j.ijheatfluidflow.2004.08.002
23.
Harikrishnan
,
S.
, and
Tiwari
,
S.
,
2018
, “
Effect of Skewness on Flow and Heat Transfer Characteristics of a Wavy Channel
,”
Int. J. Heat Mass Transfer
,
120
, pp.
956
969
. 10.1016/j.ijheatmasstransfer.2017.12.120
24.
Zhang
,
L. Z.
,
2005
, “
Turbulent Three-Dimensional Air Flow and Heat Transfer in a Cross-Corrugated Triangular Duct
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1151
1158
. 10.1115/1.2035110
25.
Yang
,
L. C.
,
Asako
,
Y.
,
Yamaguchi
,
Y.
, and
Faghri
,
M.
,
1997
, “
Numerical Prediction of Transitional Characteristics of Flow and Heat Transfer in a Corrugated Duct
,”
ASME J. Heat Transfer
,
119
(
1
), pp.
62
69
. 10.1115/1.2824101
26.
Czachorski
,
M.
,
Wurm
,
J.
,
Worek
,
W. M.
,
Mierke
,
J.
, and
Brillhart
,
P.
,
1997
, “
Dynamic Testing of Desiccant Matrices and Computerized Evaluation of Performance Maps
,”
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Winter Meeting
,
Atlanta, GA
,
Feb. 24–28
, pp.
1
7
.
27.
Ghadiri Moghaddam
,
D.
,
Fauchoux
,
M.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2014
, “
Investigating Similarity Between a Small-Scale Liquid-to-Air Membrane Energy Exchanger (LAMEE) and a Full-Scale (100 L/s) LAMEE: Experimental and Numerical Results
,”
Int. J. Heat Mass Transfer
,
77
, pp.
464
474
. 10.1016/j.ijheatmasstransfer.2014.05.032
28.
Abe
,
O. O.
,
Besant
,
R. W.
,
Simonson
,
C. J.
, and
Shang
,
W.
,
2006
, “
Relationship Between Energy Wheel Speed and Effectiveness and Its Transient Response, Part I: Mathematical Development of the Characteristic Time Constants and Their Relationship with Effectiveness
,”
ASHRAE Trans.
,
112
(
2
), pp.
89
102
.
29.
Fathieh
,
F.
,
Besant
,
R. W.
,
Evitts
,
R. W.
, and
Simonson
,
C. J.
,
2015
, “
Determination of Air-to-Air Heat Wheel Sensible Effectiveness Using Temperature Step Change Data
,”
Int. J. Heat Mass Transfer
,
87
, pp.
312
326
. 10.1016/j.ijheatmasstransfer.2015.04.028
30.
Shakouri
,
M.
,
Krishnan
,
E. N.
,
Dehabadi
,
L.
,
Karoyo
,
A. H.
,
Simonson
,
C. J.
, and
Wilson
,
L. D.
,
2018
, “
Vapor Adsorption Transient Test Facility for Dehumidification and Desorption Studies
,”
Int. J. Technol.
,
9
(
6
), pp.
1092
1102
.
31.
Alabi
,
W. O.
,
Karoyo
,
A. H.
,
Krishnan
,
E. N.
,
Dehabadi
,
L.
,
Wilson
,
L. D.
, and
Simonson
,
C. J.
,
2020
, “
Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications
,”
ACS Omega
,
5
(
16
), pp.
9529
9539
. 10.1021/acsomega.0c00762
32.
Fathieh
,
F.
,
Besant
,
R. W.
,
Evitts
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Effects of Heat Loss/Gain on the Transient Testing of Heat Wheels
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031003
. 10.1115/1.4032762
33.
De Paepe
,
M.
, and
Janssens
,
A.
,
2003
, “
Thermo-Hydraulic Design of Earth-Air Heat Exchangers
,”
Energy Build.
,
35
(
4
), pp.
389
397
. 10.1016/S0378-7788(02)00113-5
34.
De Paepe
,
M.
,
Willems
,
A.
, and
Zenner
,
A.
,
2005
, “
Experimental Determination of the Heat Transfer Coefficient of a Plate-Fin Heat Exchanger
,”
Heat Transfer Eng.
,
26
(
7
), pp.
29
35
. 10.1080/01457630590959403
35.
Huisseune
,
H.
,
De Schampheleire
,
S.
,
Ameel
,
B.
, and
De Paepe
,
M.
,
2015
, “
Comparison of Metal Foam Heat Exchangers to a Finned Heat Exchanger for Low Reynolds Number Applications
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1
9
. 10.1016/j.ijheatmasstransfer.2015.05.013
36.
Fernández-Seara
,
J.
,
Uhía
,
F. J.
,
Sieres
,
J.
, and
Campo
,
A.
,
2007
, “
A General Review of the Wilson Plot Method and Its Modifications to Determine Convection Coefficients in Heat Exchange Devices
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2745
2757
. 10.1016/j.applthermaleng.2007.04.004
37.
Krishnan
,
E. N.
,
Ramin
,
H.
,
Shakouri
,
M.
,
Wilson
,
L. D.
, and
Simonson
,
C. J.
,
2020
, “
Development of a Small-Scale Test Facility for Effectiveness Evaluation of Fixed-Bed Regenerators
,”
Appl. Therm. Eng.
,
174
, p.
115263
. 10.1016/j.applthermaleng.2020.115263
38.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons, Inc.
,
Hoboken
.
39.
Ramin
,
H.
,
Krishnan
,
E. N.
,
Gurubalan
,
A.
,
Alabi
,
W. O.
, and
Simonson
,
C. J.
,
2020
, “
Transient Numerical Model for Sensible Fixed-Bed Regenerator in HVAC Applications
,”
Int. J. Heat Mass Transfer
, submitted.
40.
Simonson
,
C. J.
, and
Besant
,
R. W.
,
1999
, “
Energy Wheel Effectiveness: Part I—Development of Dimensionless Groups
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2161
2170
. 10.1016/S0017-9310(98)00325-1
41.
ANSI/ASHRAE
,
2013
,
Standard 84, Method of Testing Air-to-Air Heat/Energy Exchangers, ASHRAE, Atlanta
.
42.
Ramin
,
H.
,
Krishnan
,
E. N.
,
Alabi
,
W.
, and
Simonson
,
C. J.
,
2020
, “
Temperature Measurement Correction for the Determination of the Effectiveness of Fixed-Bed Regenerators (FBRs) for HVAC Applications
,”
2020 ASHRAE Annual Summer Conference
,
Austin, TX (virtual)
,
June 22–July 2
, pp.
366
374
.
43.
Martin
,
H.
,
1996
, “
A Theoretical Approach to Predict the Performance of Chevron-Type Plate Heat Exchangers
,”
Chem. Eng. Process.
,
35
(
4
), pp.
301
310
. 10.1016/0255-2701(95)04129-X
44.
Focke
,
W. W.
,
Zachariades
,
J.
, and
Olivier
,
I.
,
1985
, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
28
(
8
), pp.
1469
1479
. 10.1016/0017-9310(85)90249-2
45.
Muley
,
A.
, and
Manglik
,
R. M.
,
1999
, “
Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger With Chevron Plates
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
110
117
. 10.1115/1.2825923
46.
Gasier
,
G.
, and
Kottke
,
V.
,
1998
, “
Effects of Wavelength and Inclination Angle on the Homogeneity of Local Heat Transfer Coefficients in Plate Heat Exchangers
,”
Proceedings of 11th International Heat Transfer Conference
,
J. S.
Lee
, ed.,
Kyongju, South Korea
,
Aug. 23–28
, pp.
203
208
.
47.
Sundén
,
B.
,
1999
, “Flow and Heat Transfer Mechanisms in Plate-and-Frame Heat Exchangers,“
Heat Transfer Enhancement of Heat Exchangers
,
S.
Kakaç
,
A. E.
Bergles
,
F.
Mayinger
, and
H.
Yüncü
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
185
206
.
48.
Sarraf
,
K.
,
Launay
,
S.
, and
Tadrist
,
L.
,
2015
, “
Complex 3D-Flow Analysis and Corrugation Angle Effect in Plate Heat Exchangers
,”
Int. J. Therm. Sci.
,
94
, pp.
126
138
. 10.1016/j.ijthermalsci.2015.03.002
49.
Zimmerer
,
C.
,
Gschwind
,
P.
,
Gaiser
,
G.
, and
Kottke
,
V.
,
2002
, “
Comparison of Heat and Mass Transfer in Different Heat Exchanger Geometries with Corrugated Walls
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
269
273
. 10.1016/S0894-1777(02)00136-X
50.
Dović
,
D.
,
Palm
,
B.
, and
Švaić
,
S.
,
2009
, “
Generalized Correlations for Predicting Heat Transfer and Pressure Drop in Plate Heat Exchanger Channels of Arbitrary Geometry
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4553
4563
. 10.1016/j.ijheatmasstransfer.2009.03.074
You do not currently have access to this content.