Abstract

Recently, the development trend of multi-module and multi-function in electronic microsystems makes the ever-increasing heat flux problem more serious. In this study, a highly efficient integrated single-phase microchannel cooler with four heat sources is presented for handling the challenges from both workings independently of all electronic modules and the high heat flux. Both numerical and experimental studies are conducted. By optimizing the structural design and the fabricated process, the presented microchannel cooler has outstanding cooling performance, which contains desired fluid flow distribution, pressure drop, heat transfer, and combination thereof. Results reveal uniform coolant flow dissipates four individual heaters independently, and their maximal temperature difference below 4 °C. Beyond this, high heat flux removal (707.6 W/cm2) is realized with an extremely low coolant flowrate (45 ml/min), and the maximum temperature rise is less than 60 °C. This study provides a referable solution for the thermal management of multi-module heat sources and high heat flux in compact electronic microsystems.

References

References
1.
Choudhury
,
D.
,
2010
, “
3D Integration Technologies for Emerging Microsystems
,”
2010 IEEE MTT-S International Microwave Symposium
,
Anaheim, CA
,
May 23–28
.
2.
Parry
,
J. D.
,
Rantala
,
J.
, and
Lasance
,
C. J. M.
,
2002
, “
Enhanced Electronic System Reliability—Challenges for Temperature Prediction
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
533
538
. 10.1109/TCAPT.2002.808001
3.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J. A.
, and
Gektin
,
V.
,
2017
, “
Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
7
(
8
), pp.
1191
1205
. 10.1109/TCPMT.2016.2603600
4.
Cardenas-Garcia
,
J. F.
, and
Chyu
,
M. C.
,
1990
, “
Thermally Induced Failure of Microelectronic Structures
,”
ASME J. Electron. Packag.
,
112
(
1
), pp.
80
82
. 10.1115/1.2904346
5.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
. 10.1109/EDL.1981.25367
6.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2001
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
1
), pp.
16
23
. 10.1109/6144.910797
7.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
,
Cummins
,
G.
,
Kenning
,
D. B. R.
, and
Karayiannis
,
T. G.
,
2011
, “
Experimental Investigation of Non-Uniform Heating Effect on Flow Boiling Instabilities in a Microchannel-Based Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
309
324
. 10.1016/j.ijthermalsci.2010.08.006
8.
Tikadar
,
A.
,
Hossain
,
M. M.
, and
Morshed
,
A. K. M. M.
,
2016
, “
Numerical Investigation of Thermal Performance of a Water-Cooled Mini-Channel Heat Sink for Different Chip Arrangement
,”
International Conference on Mechanical Engineering
,
Dhaka
, p.
050007
.
9.
Wang
,
T.
,
Wang
,
J.
,
He
,
J.
,
Wu
,
C.
,
Luo
,
W.
,
Shuai
,
Y.
,
Zhang
,
W.
,
Chen
,
X.
,
Zhang
,
J.
, and
Lin
,
J.
,
2018
, “
A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors
,”
Sensors
,
18
(
1
), pp.
299
308
. 10.3390/s18010299
10.
Wang
,
T.
,
Wang
,
J.
,
He
,
J.
,
Wu
,
C.
,
Luo
,
W.
,
Shuai
,
Y.
,
Zhang
,
W.
, and
Lee
,
C.
,
2018
, “
Investigation of the Temperature Fluctuation of Single-Phase Fluid Based Microchannel Heat Sink
,”
Sensors
,
18
(
5
), pp.
1498
1509
. 10.3390/s18051498
11.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
. 10.1016/0017-9310(95)00327-4
12.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
117
(
2
), pp.
319
330
. 10.1016/j.ijheatmasstransfer.2017.10.015
13.
Palko
,
J. W.
,
Lee
,
H.
,
Zhang
,
C.
,
Dusseault
,
T. J.
,
Maitra
,
T.
,
Won
,
Y.
,
Agonafer
,
D. D.
,
Moss
,
J.
,
Houshmand
,
F.
,
Rong
,
G.
,
Wilbur
,
J. D.
,
Rockosi
,
D.
,
Mykyta
,
I.
,
Resler
,
D.
,
Altman
,
D.
,
Asheghi
,
M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2017
, “
Extreme Two-Phase Cooling From Laser-Etched Diamond and Conformal, Template-Fabricated Microporous Copper
,”
Adv. Funct. Mater.
,
27
(
45
), p.
1703265
. 10.1002/adfm.201703265
14.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips
,”
ASME J. Heat Transfer
,
132
(
8
), p.
081402
. 10.1115/1.4001306
15.
Lu
,
S.
, and
Vafai
,
K.
,
2016
, “
A Comparative Analysis of Innovative Microchannel Heat Sinks for Electronic Cooling
,”
Int. Commun. Heat Mass Transfer
,
76
(
8
), pp.
271
284
. 10.1016/j.icheatmasstransfer.2016.04.024
16.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
. 10.1016/j.ijthermalsci.2004.01.003
17.
Dewan
,
A.
, and
Srivastava
,
P.
,
2015
, “
A Review of Heat Transfer Enhancement Through Flow Disruption in a Microchannel
,”
J. Therm. Sci.
,
24
(
3
), pp.
203
214
. 10.1007/s11630-015-0775-1
18.
Liu
,
Y.
,
Cui
,
J.
,
Jiang
,
Y. X.
, and
Li
,
W. Z.
,
2011
, “
A Numerical Study on Heat Transfer Performance of Microchannels With Different Surface Microstructures
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
921
931
. 10.1016/j.applthermaleng.2010.11.015
19.
İzci
,
T.
,
Koz
,
M.
, and
Koşar
,
A.
,
2015
, “
The Effect of Micro Pin-Fin Shape on Thermal and Hydraulic Performance of Micro Pin-Fin Heat Sinks
,”
Heat Transfer Eng.
,
36
(
17
), pp.
1447
1457
. 10.1080/01457632.2015.1010921
20.
Wang
,
T.
,
Li
,
Q. Y.
,
Wang
,
J. J.
,
Lv
,
L.
,
He
,
J.
,
Luo
,
W. B.
,
Wu
,
C. G.
,
Shuai
,
Y.
, and
Zhang
,
W. L.
,
2018
, “
Microchannel Heat Sink With Enhanced Heat Transfer Performance by Laser Process
,”
2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
,
Singapore
,
Apr. 22–26
, pp.
648
651
.
21.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
,
2009
, “
Single-phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3447
3468
. 10.1016/j.applthermaleng.2009.05.015
22.
Herwig
,
H.
, and
Hausner
,
O.
,
2003
, “
Critical View on “New Results in Micro-Fluid Mechanics”: An Example
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
935
937
. 10.1016/S0017-9310(02)00306-X
23.
Mansoor
,
M. M.
,
Wong
,
K. C.
, and
Siddique
,
M.
,
2012
, “
Numerical Investigation of Fluid Flow and Heat Transfer Under High Heat Flux Using Rectangular Micro-Channels
,”
Int. Commun. Heat Mass Transfer
,
39
(
2
), pp.
291
297
. 10.1016/j.icheatmasstransfer.2011.12.002
24.
Smith
,
A. N.
, and
Nochetto
,
H.
,
2014
, “
Laminar Thermally Developing Flow in Rectangular Channels and Parallel Plates: Uniform Heat Flux
,”
Heat Mass Transfer
,
50
(
11
), pp.
1627
1637
. 10.1007/s00231-014-1363-8
25.
Li
,
F.
,
Zhu
,
W. H.
, and
He
,
H.
,
2019
, “
Numerical Optimization on Microchannel Flow and Heat Transfer Performance Based on Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
130
(
3
), pp.
375
385
. 10.1016/j.ijheatmasstransfer.2018.10.112
26.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2547
2556
. 10.1016/S0017-9310(03)00035-8
27.
Jung
,
J. Y.
, and
Kwak
,
H. Y.
,
2008
, “
Fluid Flow and Heat Transfer in Microchannels With Rectangular Cross Section
,”
Heat Mass Transfer
,
44
(
9
), pp.
1041
1049
. 10.1007/s00231-007-0338-4
28.
Jiang
,
P. X.
,
Fan
,
M. H.
,
Si
,
G. S.
, and
Ren
,
Z. P.
,
2001
, “
Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1039
1051
. 10.1016/S0017-9310(00)00169-1
29.
El-Genk
,
M. S.
, and
Pourghasemi
,
M.
,
2019
, “
Nusselt Number and Development Length Correlations for Laminar Flows of Water and air in Microchannels
,”
Int. J. Heat Mass Transfer
,
133
(
4
), pp.
277
294
. 10.1016/j.ijheatmasstransfer.2018.12.077
30.
Wang
,
J.-J.
,
Wang
,
T.
,
Wu
,
C.-G.
,
Luo
,
W.-B.
,
Shuai
,
Y.
, and
Zhang
,
W.-L.
,
2019
, “
Highly Precise Ti/Pt/Cr/Au Thin-Film Temperature Sensor Embedded in a Microfluidic Device
,”
Rare Metals
. 10.1007/s12598-019-01301-7
31.
Yu
,
X.
,
Woodcock
,
C.
,
Plawsky
,
J.
, and
Peles
,
Y.
,
2016
, “
An Investigation of Convective Heat Transfer in Microchannel With Piranha Pin Fin
,”
Int. J. Heat Mass Transfer
,
103
(
12
), pp.
1125
1132
. 10.1016/j.ijheatmasstransfer.2016.07.069
32.
Zhang
,
L.
,
Koo
,
J.-M.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
,
2002
, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
,
11
(
1
), pp.
12
19
. 10.1109/84.982858
33.
Yue
,
J.
,
Luo
,
L.
,
Gonthier
,
Y.
,
Chen
,
G.
, and
Yuan
,
Q.
,
2008
, “
An Experimental Investigation of gas–Liquid Two-Phase Flow in Single Microchannel Contactors
,”
Chem. Eng. Sci.
,
63
(
16
), pp.
4189
4202
. 10.1016/j.ces.2008.05.032
34.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
,
2004
, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4215
4231
. 10.1016/j.ijheatmasstransfer.2004.04.018
35.
Qu
,
W. L.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
. 10.1016/S0017-9310(02)00101-1
36.
Asadi
,
M.
,
Xie
,
G.
, and
Sunden
,
B.
,
2014
, “
A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels
,”
Int. J. Heat Mass Transfer
,
79
(
12
), pp.
34
53
. 10.1016/j.ijheatmasstransfer.2014.07.090
37.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
. 10.1016/j.ijheatmasstransfer.2006.02.011
38.
Dixit
,
T.
, and
Ghosh
,
I.
,
2015
, “
Review of Micro- and Mini-Channel Heat Sinks and Heat Exchangers for Single Phase Fluids
,”
Renew. Sust. Energy Rev.
,
41
(
1
), pp.
1298
1311
. 10.1016/j.rser.2014.09.024
39.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J. M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2004
, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
833
842
. 10.1109/JMEMS.2004.835768
40.
Gould
,
K.
,
Cai
,
S. Q.
,
Neft
,
C.
, and
Bhunia
,
A.
,
2015
, “
Liquid Jet Impingement Cooling of a Silicon Carbide Power Conversion Module for Vehicle Applications
,”
IEEE Trans. Power Electron.
,
30
(
6
), pp.
2975
2984
. 10.1109/TPEL.2014.2331562
41.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
, and
Cummins
,
G.
,
2009
, “
Two-Phase Flow Instabilities in a Silicon Microchannels Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
854
867
. 10.1016/j.ijheatfluidflow.2009.03.013
You do not currently have access to this content.