Abstract

The reliability of submersible motors is directly related to the operational life of offshore oil-gas resources exploration and development equipment, crude oil production, and drilling costs. Temperature field model and coupling mode are the key factors for accurate analysis of cooling system. First, considering different equivalent modes of convective heat transfer of housing surface, two temperature field models are established using the finite volume method (FVM). Second, considering the influence of temperature and magnetic field, the coupling mode between heat loss (HL) and temperature of submersible motor is analyzed, and the importance of oil friction loss and copper loss as variables is pointed out. Considering the influence relationship among the components of the cooling system, the coupling mode between the radiator temperature field and the cooling system internal flow field is obtained. For a simulated circulation flow, the necessity of rotor iron loss calculation under the orthogonal decomposition correction model and rotor loss analysis is explained. Finally, the design procedure of the cooling system is proposed to obtain the design range between the structural parameters of the radiator and the circulation flow. Through the analysis of the influence factors of the cooling system, the matching mode of the same structural parameters under the two models is determined. These models are experimentally validated, and a more reasonable model is obtained under the proposed coupling mode in this paper, which can provide necessary insights for future research on submersible motor cooling systems.

References

1.
Hou
,
J. C.
,
Zhu
,
X. W.
, and
Liu
,
P. K.
,
2019
, “
Current Situation and Future Projection of Marine Renewable Energy in China
,”
Int. J. Energy Res.
,
43
(
2
), pp.
662
680
. 10.1002/er.4218
2.
Jessen
,
H.
,
2017
, “
Offshore Oil and Gas Exploitation
,”
Handb. Mar. Environ. Prot.
,
35
, pp.
683
693
. 10.1007/978-3-319-60156-4_35
3.
Chang
,
Y. C.
,
2019
, “
Chinese Legislation in the Exploration of Marine Mineral Resources and Its Adoption in the Arctic Ocean
,”
Ocean Coast. Manage.
,
168
, pp.
265
273
. 10.1016/j.ocecoaman.2018.11.012
4.
Mu
,
L. X.
, and
Ji
,
Z. F.
,
2019
, “
Technological Progress and Development Directions of PetroChina Overseas Oil and Gas Exploration
,”
Petrol. Explor. Dev.
,
46
(
6
), pp.
1088
1099
. 10.1016/S1876-3804(19)60265-X
5.
Fischer
,
P. A.
,
2005
, “
New Production Solutions Using Deep Water Sea Floor Pumping
,”
World Oil
,
226
(
11
), pp.
23
26
.
6.
Wang
,
D. M.
,
Liang
,
Y. P.
,
Li
,
C. X.
,
Yang
,
P. P.
,
Zhou
,
C. L.
, and
Gao
,
L. L.
,
2020
, “
Thermal Equivalent Network Method for Calculating Stator Temperature of a Shielding Induction Motor
,”
Int. J. Therm. Sci.
,
147
, p.
106149
. 10.1016/j.ijthermalsci.2019.106149
7.
Nikbakhsh
,
A.
,
Izadfar
,
H. R.
, and
Jazaeri
,
M.
,
2019
, “
Classification and Comparison of Rotor Temperature Estimation Methods of Squirrel Cage Induction Motors
,”
Measurement
,
145
, pp.
779
802
. 10.1016/j.measurement.2019.03.072
8.
Zhai
,
L. X.
,
Sun
,
J. J.
,
Ma
,
X.
,
Han
,
W. T.
, and
Luo
,
X. S.
,
2019
, “
Thermal–Structure Coupling Analysis and Multi-Objective Optimization of Motor Rotor in MSPMSM
,”
Chin. J. Aeronaut.
,
32
(
7
), pp.
1733
1747
. 10.1016/j.cja.2018.09.008
9.
Meng
,
D. W.
,
Liu
,
Y. L.
,
Zhang
,
Q. J.
, and
Xu
,
Y. M.
,
2010
, “
Calculation of 3D Temperature Field of the Submersible Motor Based on FLUENT
,”
Asia-Pacific Power and Energy Engineering Conference
,
Chengdu, China
,
Mar. 28–31, 2010
, pp.
1
4
, 10.1109/APPEEC.2010.5449321
10.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2017
, “
Motor Cooling Modeling: An Inverse Method for the Identification of Convection Coefficients
,”
J. Therm. Sci. Eng. Appl.
,
9
(
4
), pp.
1
14
. 10.1115/1.4036303
11.
Mo
,
L. H.
,
Zhu
,
X. Y.
,
Zhang
,
T.
,
Quan
,
L.
,
Wang
,
Y. Q.
, and
Huang
,
J.
,
2018
, “
Temperature Rise Calculation of a Flux-Switching Permanent-Magnet Double-Rotor Machine Using Electromagnetic-Thermal Coupling
,”
IEEE Trans. Magn.
,
54
(
3
), p.
8201004
. 10.1109/TMAG.2017.2764182
12.
Jang
,
J. H.
,
Chiu
,
H. C.
,
Yan
,
W. M.
,
Tsai
,
M. C.
, and
Wang
,
P. Y.
,
2015
, “
Numerical Study on Electromagnetics and Thermal Cooling of a Switched Reluctance Motor
,”
Case Stud. Therm. Eng.
,
6
, pp.
16
27
. 10.1016/j.csite.2015.05.001
13.
Kim
,
K. S.
,
Kim
,
H. J.
, and
Hong
,
J. P.
,
2014
, “
Thermal Equivalent Circuit Network for Outer Rotor Type Motors
,”
7th IET International Conference on Power Electronics, Machines and Drives
,
Manchester, UK
,
Apr. 8–10, 2014
, pp.
1
4
.
14.
Hruska
,
K.
,
Kindl
,
V.
,
Pechanek
,
R.
, and
Skala
,
B.
,
2014
, “
Evaluation of Different Approaches of Mathematical Modelling of Thermal Phenomena Applied to Induction Motors
,”
ELEKTRO
,
Rajecke Teplice, Slovakia
,
May 19–20, 2014
, pp.
358
362
. 10.1109/ELEKTRO.2014.6848918
15.
Nair
,
D. G.
,
Jokinen
,
T.
, and
Arkkio
,
A.
,
2016
, “
Coupled Analytical and 3D Numerical Thermal Analysis of a TEFC Induction Motor
,”
18th International Conference on Electrical Machines and Systems
,
Pattaya, Thailand
,
Oct. 25–28, 2015
, pp.
103
108
.
16.
Bhattacharya
,
N. K.
, and
Sarkar
,
D.
,
2015
, “
Approximate Analysis of Transient Heat Conduction in the Rotor of an Induction Motor During Star-Delta Starting
,”
International Conference on Information Communication and Embedded System
,
Chennai, India
,
Feb. 27–28, 2014
, pp.
1
6
.
17.
Wang
,
R. J.
, and
Heyns
,
G. C.
,
2013
, “
Thermal Analysis of a Water-Cooled Interior Permanent Magnet Traction Machine
,”
IEEE International Conference on Industrial Technology
,
Cape Town, South Africa
,
Feb. 25–28, 2013
, pp.
416
421
.
18.
Shanel
,
M.
,
Pickering
,
S. J.
, and
Lampard
,
D.
,
2003
, “
Conjugate Heat Transfer Analysis of a Salient Pole Rotor in an Air Cooled Synchronous Generator
,”
IEEE International Electric Machines and Drives Conference
,
Madison
,
June 1–4, 2003
, pp.
737
741
.
19.
Zhang
,
Y. J.
,
Ruan
,
J. J.
,
Huang
,
T.
,
Yang
,
X. P.
,
Zhu
,
H. Q.
, and
Yang
,
G.
,
2012
, “
Calculation of Temperature Rise in Air-Cooled Induction Motors Through 3-D Coupled Electromagnetic Fluid-Dynamical and Thermal Finite-Element Analysis
,”
IEEE Trans. Magn.
,
48
(
2
), pp.
1047
1050
. 10.1109/TMAG.2011.2174433
20.
Moon
,
S. H.
,
Yun
,
J. H.
,
Kim
,
W. G.
, and
Kim
,
J. P.
,
2014
, “
Thermal-Flow Analysis and Cooling Performance Enhancement of a Totally Enclosed Fan-Cooled Motor
,”
International Conference on Electrical Machines and Systems
,
Busan, South Korea
,
Oct. 26–29, 2013
, pp.
2028
2030
.
21.
Sadeghi
,
S.
,
Isfahani
,
A. H.
, and
Sedghisigarchi
,
K.
,
2015
, “
Iron Loss Calculation and 3-D Thermal Analysis of Halbach Array Permanent Magnet Synchronous Motor
,”
International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicle
,
Aachen, Germany
,
Mar. 3–5, 2015
, pp.
1
6
.
22.
Shin
,
K. H.
,
Hong
,
K.
,
Cho
,
H. W.
, and
Choi
,
J. Y.
,
2018
, “
Core Loss Calculation of Permanent Magnet Machines Using Analytical Method
,”
IEEE Trans. Appl. Supercond.
,
28
(
3
), p.
5205005
. 10.1109/TASC.2018.2800706
23.
Kwon
,
H.
, and
Park
,
H.
,
2020
, “
Numerical Investigation of Optimal Air Flow Rate for Cooling 600W Brushless Direct-Current Motor
,”
J. Therm. Sci. Eng. Appl.
,
13
(
4
), pp.
1
22
. 10.1115/1.4048755
24.
Han
,
X. Y.
, and
Song
,
C.
,
2020
, “
Research on Temperature Rise Influencing Factors and Calculation of Permanent Magnet Synchronous Motor for Vehicle Based on Magneto-Thermal Coupling Method
,”
Electric Mach. Control
,
24
(
2
), pp.
28
35
. 10.15938/j.emc.2020.02.004
25.
Kim
,
C.
, and
Lee
,
K. S.
,
2017
, “
Thermal Nexus Model for the Thermal Characteristic Analysis of an Open-Type Air-Cooled Induction Motor
,”
Appl. Therm. Eng.
,
112
, pp.
1108
1116
. 10.1016/j.applthermaleng.2016.10.197
26.
Tikadar
,
A.
,
Johnston
,
D.
,
Kumar
,
N.
,
Joshi
,
Y.
, and
Kumar
,
S.
,
2020
, “
Comparison of Electro-Thermal Performance of Advanced Cooling Techniques for Electric Vehicle Motors
,”
Appl. Therm. Eng.
,
183
, p.
116182
. 10.1016/j.applthermaleng.2020.116182
27.
Hsu
,
J. S.
,
2005
,
Report on Toyota Prius Motor Thermal Management
,
Oak Ridge National Laboratory
,
TN
.
28.
Ou
,
W. C.
,
Yang
,
M.
,
Meng
,
F.
,
Xu
,
Z. H.
,
Zhuang
,
X. Q.
, and
Li
,
S. Y.
,
2015
, “
Continuous High-Performance Drive of Rotary Traveling-Wave Ultrasonic Motor with Water Cooling
,”
Sensor Actuat. A-Phys.
,
222
, pp.
220
227
. 10.1016/j.sna.2014.12.019
29.
Sun
,
Y. L.
,
Zhang
,
S. W.
,
Chen
,
G.
,
Yong
,
T.
, and
Liang
,
F. Y.
,
2020
, “
Experimental and Numerical Investigation on a Novel Heat Pipe Based Cooling Strategy for Permanent Magnet Synchronous Motors
,”
Appl. Therm. Eng.
,
170
, p.
114970
. 10.1016/j.applthermaleng.2020.114970
30.
Sun
,
X. K.
, and
Cheng
,
M.
,
2013
, “
Thermal Analysis and Cooling System Design of Dual Mechanical Port Machine for Wind Power Application
,”
IEEE Trans. Ind. Electron.
,
60
(
5
), pp.
1724
1733
. 10.1109/TIE.2012.2190958
31.
Chen
,
Y. C.
, and
Pillay
,
P.
,
2002
, “
An Improved Formula for Laminations Core Loss Calculations in Machines Operating With High Frequency and High Flux Density Excitation
,”
Conference Record of the 2002 IEEE Industry Applications Conference
,
Pittsburgh
,
Oct. 13–18, 2002
, pp.
759
766
.
32.
Gmyrek
,
Z.
,
Aldo Boglietti
,
A.
, and
Cavagnino
,
A.
,
2010
, “
Estimation of Iron Losses in Induction Motors: Calculation Method, Results, and Analysis
,”
IEEE Trans. Ind. Electron.
,
57
(
1
), pp.
161
171
. 10.1109/TIE.2009.2024095
33.
Eggers
,
D.
,
Steentjes
,
S.
, and
Hameyer
,
K.
,
2012
, “
Advanced Iron-Loss Estimation for Nonlinear Material Behavior
,”
IEEE Trans. Magn.
,
48
(
11
), pp.
3021
3024
. 10.1109/TMAG.2012.2208944
34.
Wei
,
Y. T.
,
Meng
,
D. W.
, and
Wen
,
J. B.
,
1998
,
Heat Exchange in the Motor
,
Mechanical Engineering Press
,
Beijing
. Chap. 4.
35.
Wang
,
B. L.
, and
Li
,
J. Z.
,
1999
,
Petroleum Engineering Fluid Machinery
,
Petroleum Engineering Press
,
Beijing
. Chap. 3.
You do not currently have access to this content.