Abstract

The present paper investigates the buoyancy induced flow and heat transfer in a square enclosure filled with Fe3O4/water nanofluid heated by mutually orthogonal heaters and symmetrically cooled by sidewalls under the influence of a strong uniform magnetic field. The nanofluid is experimentally synthesized by two-step method and the different thermophysical properties are measured. These experimentally determined properties are compared with the classical correlations available in the literature. Those correlations are found to underpredict the dynamic viscosity and thermal conductivity of the nanofluid. The error related to the use of the classical correlations is determined and it increases with the volume fraction. Hence, the experimentally determined properties are directly used in the numerical simulation. The governing equations in the form of nondimensional stream function, vorticity, and energy equations containing experimentally determined properties are solved using the finite difference method (FDM). The consequence of different factors like positions of the heaters, varying range of Rayleigh number (103 ≤ Ra ≤ 106), the extremely low volume fraction of nanofluids (0 ≤ φ ≤ 0.0007), and Hartmann number (0 ≤ Ha ≤ 75) on the heat transport is studied and reported. The study explains and analyzes the streamlines and isotherms at different conditions. The results show that the positions of the horizontal and vertical heater have a significant effect on heat transfer and fluid flow inside the enclosure. Furthermore, the increase in Ha enervates the strength of flow and it leads to the deterioration of heat transfer.

References

1.
Ostrach
,
S.
,
1988
, “
Natural Convection in Enclosures
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1175
1190
. 10.1115/1.3250619
2.
Sharma
,
A. K.
,
Velusamy
,
K.
, and
Balaji
,
C.
,
2007
, “
Turbulent Natural Convection in an Enclosure With Localized Heating From Below
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1232
1241
. 10.1016/j.ijthermalsci.2007.01.010
3.
Calcagni
,
B.
,
Marsili
,
F.
, and
Paroncini
,
M.
,
2005
, “
Natural Convective Heat Transfer in Square Enclosures Heated From Below
,”
Appl. Therm. Eng.
,
25
(
16
), pp.
2522
2531
. 10.1016/j.applthermaleng.2004.11.032
4.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
. 10.1016/j.ijheatfluidflow.2008.04.009
5.
Subudhi
,
S.
, and
Arakeri
,
J. H.
,
2012
, “
Flow Visualization in Turbulent Free Convection Over Horizontal Smooth and Grooved Surfaces
,”
Int. Commun. Heat Mass Transf.
,
39
(
3
), pp.
414
418
. 10.1016/j.icheatmasstransfer.2011.12.014
6.
Türkoglu
,
H.
, and
Yücel
,
N.
,
1995
, “
Effect of Heater and Cooler Locations on Natural Convection in Square Cavities
,”
Numer. Heat Transfer, Part A
,
27
(
3
), pp.
351
358
. 10.1080/10407789508913705
7.
Aydin
,
O.
, and
Yang
,
W.-J.
,
2000
, “
Natural Convection in Enclosures With Localized Heating From Below and Symmetrical Cooling From Sides
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
(
5
), pp.
518
529
. 10.1108/09615530010338196
8.
Kumar
,
A.
, and
Subudhi
,
S.
,
2020
, “
Thermal Fluctuations and Boundary Layer Properties of Turbulent Natural Convection Inside Open Cavities of Different Dimensions Heated From Below
,”
Phys. Fluids
,
32
(
6
), p.
67114
. 10.1063/5.0008160
9.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,
Argonne National Lab
,
IL (United States)
.
10.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D. M.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids—an Overview
,”
Renew. Sustain. Energy Rev.
,
14
(
2
), pp.
629
641
. 10.1016/j.rser.2009.10.004
11.
Raj
,
P.
, and
Subudhi
,
S.
,
2018
, “
A Review of Studies Using Nanofluids in Flat-Plate and Direct Absorption Solar Collectors
,”
Renew. Sustain. Energy Rev.
,
84
, pp.
54
74
. 10.1016/j.rser.2017.10.012
12.
Kumar
,
A.
, and
Subudhi
,
S.
,
2019
, “
Preparation, Characterization and Heat Transfer Analysis of Nanofluids Used for Engine Cooling
,”
Appl. Therm. Eng.
,
160
. 10.1016/j.applthermaleng.2019.114092
13.
Ho
,
C.-J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
. 10.1016/j.ijthermalsci.2010.02.013
14.
Abu-Nada
,
E.
,
Masoud
,
Z.
,
Oztop
,
H. F.
, and
Campo
,
A.
,
2010
, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
479
491
. 10.1016/j.ijthermalsci.2009.09.002
15.
Öğüt
,
E. B.
,
2009
, “
Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2063
2073
. 10.1016/j.ijthermalsci.2009.03.014
16.
Haddad
,
Z.
,
Abu-Nada
,
E.
,
Oztop
,
H. F.
, and
Mataoui
,
A.
,
2012
, “
Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement?
,”
Int. J. Therm. Sci.
,
57
, pp.
152
162
. 10.1016/j.ijthermalsci.2012.01.016
17.
Kumar
,
A.
, and
Subudhi
,
S.
,
2018
, “
Preparation, Characteristics, Convection and Applications of Magnetic Nanofluids: A Review
,”
Heat Mass Transf.
,
54
(
2
). 10.1007/s00231-017-2114-4
18.
Zhu
,
H.
,
Zhang
,
C.
,
Liu
,
S.
,
Tang
,
Y.
, and
Yin
,
Y.
,
2006
, “
Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
,
89
(
2
), p.
023123
. 10.1063/1.2221905
19.
Tayebi
,
T.
, and
Chamkha
,
A. J.
,
2020
, “
Magnetohydrodynamic Natural Convection Heat Transfer of Hybrid Nanofluid in a Square Enclosure in the Presence of a Wavy Circular Conductive Cylinder
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031009
. 10.1115/1.4044857
20.
Sheikholeslami
,
M.
, and
Rashidi
,
M. M.
,
2015
, “
Effect of Space Dependent Magnetic Field on Free Convection of Fe3O4-Water Nanofluid
,”
J. Taiwan Inst. Chem. Eng.
,
56
, pp.
6
15
. 10.1016/j.jtice.2015.03.035
21.
Sheikholeslami
,
M.
, and
Shamlooei
,
M.
,
2017
, “
Fe3O4–H2O Nanofluid Natural Convection in Presence of Thermal Radiation
,”
Int. J. Hydrogen Energy
,
42
(
9
), pp.
5708
5718
. 10.1016/j.ijhydene.2017.02.031
22.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Free Convection of Fe3O4-Water Nanofluid Under the Influence of an External Magnetic Source
,”
J. Mol. Liq.
,
229
, pp.
530
540
. 10.1016/j.molliq.2016.12.101
23.
Hajatzadeh Pordanjani
,
A.
,
Aghakhani
,
S.
,
Karimipour
,
A.
,
Afrand
,
M.
, and
Goodarzi
,
M.
,
2019
, “
Investigation of Free Convection Heat Transfer and Entropy Generation of Nanofluid Flow Inside a Cavity Affected by Magnetic Field and Thermal Radiation
,”
J. Therm. Anal. Calorim.
,
137
(
3
), pp.
997
1019
. 10.1007/s10973-018-7982-4
24.
Sheikholeslami
,
M.
, and
Shehzad
,
S. A.
,
2017
, “
CVFEM for Influence of External Magnetic Source on Fe3O4-H2O Nanofluid Behavior in a Permeable Cavity Considering Shape Effect
,”
Int. J. Heat Mass Transf.
,
115
, pp.
180
191
. 10.1016/j.ijheatmasstransfer.2017.07.045
25.
Dogonchi
,
A. S.
,
Waqas
,
M.
,
Seyyedi
,
S. M.
,
Hashemi-Tilehnoee
,
M.
, and
Ganji
,
D. D.
,
2019
, “
CVFEM Analysis for Fe3O4–H2O Nanofluid in an Annulus Subject to Thermal Radiation
,”
Int. J. Heat Mass Transf.
,
132
, pp.
473
483
. 10.1016/j.ijheatmasstransfer.2018.11.124
26.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transf.
,
46
(
19
), pp.
3639
3653
. 10.1016/S0017-9310(03)00156-X
27.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
. 10.1021/i160003a005
28.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
. 10.1063/1.1700493
29.
Minea
,
A. A.
,
Buonomo
,
B.
,
Burggraf
,
J.
,
Ercole
,
D.
,
Karpaiya
,
K. R.
,
Di Pasqua
,
A.
,
Sekrani
,
G.
,
Steffens
,
J.
,
Tibaut
,
J.
,
Wichmann
,
N.
,
Farber
,
P.
,
Huminic
,
A.
,
Huminic
,
G.
,
Mahu
,
R.
,
Manca
,
O.
,
Oprea
,
C.
,
Poncet
,
S.
, and
Ravnik
,
J.
,
2019
, “
NanoRound: A Benchmark Study on the Numerical Approach in Nanofluids’ Simulation
,”
Int. Commun. Heat Mass Transf.
,
108
, p.
104292
. 10.1016/j.icheatmasstransfer.2019.104292
30.
Chakraborty
,
S.
, and
Panigrahi
,
P. K.
,
2020
, “
Stability of Nanofluid: A Review
,”
Appl. Therm. Eng.
,
174
. 10.1016/j.applthermaleng.2020.115259
31.
Abareshi
,
M.
,
Goharshadi
,
E. K.
, and
Mojtaba
,
S.
,
2010
, “
Journal of Magnetism and Magnetic Materials Fabrication, Characterization and Measurement of Thermal Conductivity of Fe3O4 Nanofluids
,”
J. Magn. Magn. Mater.
,
322
(
24
), pp.
3895
3901
. 10.1016/j.jmmm.2010.08.016
32.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2013
, “
Thermal Conductivity of Ethylene Glycol and Water Mixture Based Fe3O4 Nanofluid
,”
Int. Commun. Heat Mass Transf.
,
49
, pp.
17
24
. 10.1016/j.icheatmasstransfer.2013.08.026
33.
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2013
, “
Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications
,”
Int. Commun. Heat Mass Transf.
,
44
, pp.
7
14
. 10.1016/j.icheatmasstransfer.2013.02.014
34.
Kandaswamy
,
P.
,
Lee
,
J.
,
Hakeem
,
A. K. A.
, and
Saravanan
,
S.
,
2008
, “
Effect of Baffle–Cavity Ratios on Buoyancy Convection in a Cavity With Mutually Orthogonal Heated Baffles
,”
Int. J. Heat Mass Transf.
,
51
(
7–8
), pp.
1830
1837
. 10.1016/j.ijheatmasstransfer.2007.06.039
35.
Saravanan
,
S.
,
Abdul Hakeem
,
A. K.
,
Kandaswamy
,
P.
, and
Lee
,
J.
,
2008
, “
Buoyancy Convection in a Cavity With Mutually Orthogonal Heated Plates
,”
Comput. Math. Appl.
,
55
(
12
), pp.
2903
2912
. 10.1016/j.camwa.2007.11.024
36.
Papanicolaou
,
E.
, and
Jaiuria
,
Y.
,
1994
, “
Electronic Components at Varying Relative Positions in a Cavity
,”
J. Heat Tranfer
,
116
(
1986
), pp.
960
970
. 10.1115/1.2911472
37.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford
.
38.
Ghasemi
,
B.
,
Aminossadati
,
S. M.
, and
Raisi
,
A.
,
2011
, “
Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1748
1756
. 10.1016/j.ijthermalsci.2011.04.010
39.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
. 10.1002/fld.1650030305
40.
Markatos
,
N. C.
, and
Pericleous
,
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transf.
,
27
(
5
), pp.
755
772
. 10.1016/0017-9310(84)90145-5
41.
Garoosi
,
F.
,
Bagheri
,
G.
, and
Talebi
,
F.
,
2013
, “
Numerical Simulation of Natural Convection of Nanofluids in a Square Cavity With Several Pairs of Heaters and Coolers (HACs) Inside
,”
Int. J. Heat Mass Transf.
,
67
, pp.
362
376
. 10.1016/j.ijheatmasstransfer.2013.08.034
42.
Corcione
,
M.
,
Cianfrini
,
M.
, and
Quintino
,
A.
,
2015
, “
Enhanced Natural Convection Heat Transfer of Nanofluids in Enclosures With Two Adjacent Walls Heated and the Two Opposite Walls Cooled
,”
Int. J. Heat Mass Transf.
,
88
, pp.
902
913
. 10.1016/j.ijheatmasstransfer.2015.05.028
43.
Corcione
,
M.
,
2010
, “
Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1536
1546
. 10.1016/j.ijthermalsci.2010.05.005
You do not currently have access to this content.