Abstract

This work describes the development of a methodology that couples one-dimensional (1D) network elements with three-dimensional spatial computational fluid dynamic (CFD) elements to analyze shell-and-tube heat exchangers with dense tube bundles. The 1D elements represent the tube flow while the spatial elements represent the external auxiliary flow. This reduces the computational expense significantly as compared to full computational fluid dynamics analysis of the same system, while a detailed transient temperature distribution can still be obtained. The methodology uses a unique combination of relaxation algorithms, a polynomial regression mapping procedure, and discretisation methods to create a coherent numerical methodology. Simulations are performed on a TEMA-FU-type shell-and-tube heat exchanger. The methodology was validated against full CFD and indicates errors between the calculated logarithmic mean temperature differences (LMTD) of less than 2% over a range of turbulent flow conditions. Various combinations of media for primary and auxiliary fluids are considered, to test the applicability and robustness of the methodology. Finally, a transient simulation of timed step inputs for the flowrate and temperature of both primary and auxiliary fluids also corresponds with a full CFD analysis. It is concluded that the proposed 1D-CFD method is effective for simplifying the analysis of flow-through tube bundles.

References

1.
Hoseinzadeh
,
S.
, and
Heyns
,
P. S.
,
2020
, “
Thermo-structural Fatigue and Lifetime Analysis of a Heat Exchanger as a Feedwater Heater in Power Plant
,”
Eng. Fail. Anal.
,
113
, p.
104548
. 10.1016/j.engfailanal.2020.104548
2.
Liu
,
M. S.
,
Dong
,
Q. W.
,
Wang
,
D. B.
, and
Ling
,
X.
,
1999
, “
Numerical Simulation of Thermal Stress in Tube-Sheet of Heat Transfer Equipment
,”
Int. J. Press. Vessel. Pip.
,
76
(
10
), pp.
671
675
. 10.1016/S0308-0161(99)00037-X
3.
Li
,
H.
,
Qian
,
C.
, and
Yu
,
X.
,
2011
, “
Thermal Stress Analysis of a Tubesheet With a Welding Clad
,”
Advanced Materials Research
,
201–203
, pp.
302
307
.
4.
Patil
,
R.
, and
Anand
,
S.
,
2017
, “
Thermo-structural Fatigue Analysis of Shell and Tube Type Heat Exchanger
,”
Int. J. Press. Vessel. Pip.
,
155
, pp.
35
42
. 10.1016/j.ijpvp.2017.03.004
5.
Jiuyi
,
L.
,
Caifu
,
Q.
, and
Huifang
,
L.
,
2018
, “
Thermal Stress Analysis on the Thick Tubesheet With Square Layout of Tubes
,”
Int. J. Interact. Des. Manuf.
,
12
(
1
), pp.
243
251
. 10.1007/s12008-016-0363-y
6.
Mao
,
J.
,
Tang
,
D.
,
Bao
,
S.
,
Luo
,
L.
, and
Gao
,
Z.
,
2016
, “
High Temperature Strength and Multiaxial Fatigue Life Assessment of a Tubesheet Structure
,”
Eng. Fail. Anal.
,
68
, pp.
10
21
. 10.1016/j.engfailanal.2016.05.030
7.
Filimonov
,
S. A.
,
Mikhienkova
,
E. I.
,
Dekterev
,
A. A.
, and
Boykov
,
D. V.
,
2017
, “
Hybrid Methods for Simulating Hydrodynamics and Heat Transfer in Multiscale (1D-3D) Models
,”
J. Phys. Conf. Ser.
,
899
(
5
), p.
052004
.
8.
Singh
,
S.
, and
Abbassi
,
H.
,
2018
, “
1D/3D Transient HVAC Thermal Modeling of an Off-Highway Machinery Cabin Using CFD-ANN Hybrid Method
,”
Appl. Therm. Eng.
,
135
, pp.
406
417
. 10.1016/j.applthermaleng.2018.02.054
9.
Zaversky
,
F.
,
Sánchez
,
M.
, and
Astrain
,
D.
,
2014
, “
Object-Oriented Modeling for the Transient Response Simulation of Multi-pass Shell-and-Tube Heat Exchangers as Applied in Active Indirect Thermal Energy Storage Systems for Concentrated Solar Power
,”
Energy
,
65
, pp.
647
664
. 10.1016/j.energy.2013.11.070
10.
Rousseau
,
P. G.
, and
Gwebu
,
E. Z.
,
2018
, “
Modelling of a Superheater Heat Exchanger With Complex Flow Arrangement Including Flow and Temperature Maldistribution
,”
Heat Transf. Eng
,
40
(
11
), pp.
862
878
.
11.
Bonilla
,
J.
,
de la Calle
,
A.
,
Rodríguez-García
,
M. M.
,
Roca
,
L.
, and
Valenzuela
,
L.
,
2017
, “
Study on Shell-and-Tube Heat Exchanger Models With Different Degree of Complexity for Process Simulation and Control Design
,”
Appl. Therm. Eng.
,
124
, pp.
1425
1440
. 10.1016/j.applthermaleng.2017.06.129
12.
You
,
Y.
,
Fan
,
A.
,
Huang
,
S.
, and
Liu
,
W.
,
2012
, “
Numerical Modeling and Experimental Validation of Heat Transfer and Flow Resistance on the Shell Side of a Shell-and-Tube Heat Exchanger With Flower Baffles
,”
Int. J. Heat Mass Transf.
,
55
(
25–26
), pp.
7561
7569
. 10.1016/j.ijheatmasstransfer.2012.07.058
13.
Ambekar
,
A. S.
,
Sivakumar
,
R.
,
Anantharaman
,
N.
, and
Vivekenandan
,
M.
,
2016
, “
CFD Simulation Study of Shell and Tube Heat Exchangers With Different Baffle Segment Configurations
,”
Appl. Therm. Eng.
,
108
, pp.
999
1007
. 10.1016/j.applthermaleng.2016.08.013
14.
Kim
,
J.
,
Sibilli
,
T.
,
Ha
,
M. Y.
,
Kim
,
K.
, and
Yoon
,
S. Y.
,
2019
, “
Compound Porous Media Model for Simulation of Flat Top U-Tube Compact Heat Exchanger
,”
Int. J. Heat Mass Transf.
,
138
, pp.
1029
1041
. 10.1016/j.ijheatmasstransfer.2019.04.116
15.
Kruger
,
J.
, and
Du Toit
,
C.
,
2006
, “
The Simulation of a Thermal-Fluid System Using an Integrated Systems CFD Approach
,” Fifth International Conference on CFD in the Process Industries CSIRO, Melbourne, Australia, pp.
1
7
.
16.
Koekemoer
,
O.
,
Du Toit
,
C.
, and
Kruger
,
J.
,
2018
,
Investigation Into the Coupled 1D and 3D Numerical Modeling of an Air-Cooled Heat Exchanger Configuration OC Koekemoer
,
North-West University
,
Potchefstroom Campus, South Africa
.
17.
Flownex
,
S. E.
,
2015
, “
Flownex Theory Manual
.”
18.
Ansys
,
2019
,
Ansys Fluent Theory Guide
.
19.
Verstraete
,
T.
, and
Van den Braembussche
,
R. A.
,
2009
, “
A Novel Method for the Computation of Conjugate Heat Transfer With Coupled Solvers
,”
International Symposium on Heat Transfer in Gas Turbine Systems
,
Antalya
.
20.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
,
Albuquerque, NM
.
You do not currently have access to this content.