Abstract

Computer codes were developed to study the performance of compact heat exchangers (CHEs) operating in self-sustained oscillatory flow (SSOF) regimes. The methods were based on a control volume-based finite element (CVFEM) method for geometric discretization and the explicit first stage, single diagonal coefficient, diagonally implicit, Runge–Kutta (ESDIRK) method for temporal discretization. The developed codes were validated for both steady and unsteady cases. A study of nine geometrically related domains of flat tubes in staggered configurations was performed. Grid independence was established subject to double cyclic conditions—periodically fully developed flow and heat transfer in the stream-wise direction and cyclic or repeating flow and heat transfer in the cross-stream direction. The maximum Reynolds number was established at approximately 2000 for the cases studied to avoid the turbulent flow regime. Parameters of interest like Nusselt number, friction factor, and pumping power were calculated for steady and SSOF regimes. An approach was proposed to determine critical Reynolds number (Recrit) for the SSOFs such that for Reynolds number below Recrit the flow remains steady, and above Recrit, the flow exhibits the characteristics of SSOFs before finally transitioning to fully turbulent conditions. The results indicated a sensitivity of performance parameters to transverse spacing but not to longitudinal spacing.

References

1.
Fullerton
,
T. L.
,
2011
, “
Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes
,” Ph.D. dissertation,
Texas A&M University
,
College Station
, TX.
2.
Fullerton
,
T. L.
, and
Anand
,
N. K.
,
2010
, “
Periodically Fully-Developed Flow and Heat Transfer Over Flat and Oval Tubes Using A Control Volume Finite-Element Method
,”
Numer. Heat Transfer Part A
,
57
(
9
), pp.
642
665
. 10.1080/10407781003744888
3.
Fullerton
,
T. L.
, and
Anand
,
N. K.
,
2010
, “
An Alternative Approach to Study Periodically Fully-Developed Flow and Heat Transfer Problems Subject to Isothermal Heating Conditions
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1253
1262
. 10.1016/j.ijengsci.2010.07.012
4.
Adachi
,
T.
, and
Uehara
,
H.
,
2003
, “
Linear Stability Analysis of Flow in a Periodically Grooved Channel
,”
Int. J. Numer. Methods Fluids
,
41
(
6
), pp.
601
613
. 10.1002/fld.456
5.
Ghaddar
,
N. K.
,
Korczak
,
K. Z.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Self-sustained Oscillations
,”
J. Fluid Mech.
,
163
, pp.
99
127
. 10.1017/S0022112086002227
6.
Majumdar
,
D.
, and
Amon
,
C. H.
,
1992
, “
Heat and Momentum Transport in Self-sustained Oscillatory Viscous Flows
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
866
873
. 10.1115/1.2911894
7.
Amon
,
C. H.
,
Mikic
,
B. B.
, and
B
,
B.
,
1991
, “
Spectral Element Simulations of Unsteady Forced Convective Heat Transfer: Application to Compact Heat Exchanger Geometries
,”
Numer. Heat Transfer
,
19
(
1
), pp.
1
19
. 10.1080/10407789108944835
8.
Majumdar
,
D.
, and
Amon
,
C. H.
,
1997
, “
Oscillatory Momentum Transport Mechanisms in Transitional Complex Geometry Flows
,”
ASME J. Fluids Eng.
,
119
(
1
), pp.
29
35
. 10.1115/1.2819114
9.
Amon
,
C. H.
,
Majumdar
,
D.
,
Herman
,
C. V.
,
Mayinger
,
F.
,
Mikic
,
B. B.
, and
Sekulic
,
D. P.
,
1992
, “
Numerical and Experimental Studies of Self-Sustained Oscillatory Flows in Communicating Channels
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3115
3129
. 10.1016/0017-9310(92)90331-L
10.
Guzman
,
A. M.
,
Beiza
,
M. P.
, and
Fischer
,
P. F.
,
2007
, “
Transition Scenario of Periodic and Quasiperiodic Flow Bifurcations in Symmetric Communicating Channels
,”
Proceedings of 5th Joint ASME/JSME Fluids Engineering Conference
,
San Diego, CA
,
July 30–Aug. 2
, pp.
1265
1272
.
11.
Zhang
,
L. W.
,
Balachandra
,
S.
,
Tafti
,
D. F.
, and
Najjar
,
F. M.
,
1997
, “
Heat Transfer Enhancement Mechanisms in Inline and Staggered Parallel-Plate Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2307
2325
. 10.1016/S0017-9310(96)00303-1
12.
Balachandar
,
S.
, and
Parker
,
S. J.
,
2002
, “
Onset of Vortex Shedding in an Inline and Staggered Array of Rectangular Cylinders
,”
Phys. Fluids
,
14
(
10
), pp.
3714
3732
. 10.1063/1.1508101
13.
Achaichia
,
A.
, and
Cowell
,
T. A.
,
1988
, “
Heat Transfer and Pressure Drop Characteristics of Flat Tube and Louvered Plate Fin Surfaces
,”
Exp. Therm. Fluid. Sci.
,
1
(
2
), pp.
147
157
. 10.1016/0894-1777(88)90032-5
14.
Bahaidarah
,
H. M. S.
,
Anand
,
N. K.
, and
Chen
,
H. C.
,
2005
, “
A Numerical Study of Fluid Flow and Heat Transfer Over a Bank of Flat Tubes
,”
Numer. Heat Transfer, Part A
,
48
(
4
), pp.
359
385
. 10.1080/10407780590957134
15.
Bahaidarah
,
H. M. S.
,
Ijaz
,
M.
, and
Anand
,
N. K.
,
2006
, “
Numerical Study of Fluid Flow and Heat Transfer Over a Series of In-line Noncircular Tubes Confined in a Parallel-Plate Channel
,”
Numer. Heat Transfer Part B
,
50
(
2
), pp.
97
119
. 10.1080/10407790600599041
16.
Henniche
,
R.
, and
Korichi
,
A.
,
2020
, “
Enhanced Mixed Convection in a Vertical Channel by Addition of Staggered Inclined Baffles
,”
AIAA J. Thermophysics Heat Transfer
, pp.
1
13
. 10.2514/1.T6037
17.
Guzmán
,
A. M.
,
Cárdenas
,
M. J.
,
Urzúa
,
F. A.
, and
Araya
,
P. E.
,
2009
, “
Heat Transfer Enhancement by Flow Bifurcations in Asymmetric Wavy Wall Channels
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3778
3789
. 10.1016/j.ijheatmasstransfer.2009.02.026
18.
Guzmán
,
A. M.
,
Hormazabal
,
R. A.
, and
Aracena
,
T. A.
,
2009
, “
Heat Transfer Enhancement Due to Frequency Doubling and Ruelle–Takens–Newhouse Transition Scenarios in Symmetric Wavy Channels
,”
ASME J. Heat Transfer
,
131
(
9
), p.
091902
. 10.1115/1.3139108
19.
Korichi
,
A.
,
Oufer
,
L.
, and
Polidori
,
G.
,
2009
, “
Heat Transfer Enhancement in Self-sustained Oscillatory Flow in a Grooved Channel With Oblique Plates
,”
Int. J. Heat Mass Transfer
,
52
(
5-6
), pp.
1138
1148
.
2009
. 10.1016/j.ijheatmasstransfer.2008.09.013
20.
Henniche
,
R.
, and
Korichi
,
A.
,
2017
, “
Heat Transfer Enhancement in Self-sustained Oscillatory Flow in a Staggered Baffled Vertical Channel Under the Buoyancy Effect
,”
Numer. Heat Transfer, Part A: Applications
,
71
(
12
), pp.
1189
1204
. 10.1080/10407782.2017.1353370
21.
Henniche
,
R.
,
Korichi
,
A.
, and
Ziane
,
F.
,
2018
, “
Mixed Convection Heat Transfer in a Channel in Presence of Baffles
,”
SSRN Electronic J.
10.2139/ssrn.3371803
22.
Iachachene
,
F.
,
Mataoui
,
A.
, and
Halouane
,
Y.
,
2015
, “
Numerical Investigations on Heat Transfer of Self-sustained Oscillation of a Turbulent Jet Flow Inside a Cavity
,”
ASME J. Heat Transfer
,
137
(
10
), p.
101702
. 10.1115/1.4030497
23.
Park
,
T. S.
,
2017
, “
Plate-Spacing Effect on Unsteady Flows and Heat Transfer Characteristics in a Channel With Inclined Plates
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
4825
4832
. 10.1007/s12206-017-0930-6
24.
Adachi
,
T.
,
Tashiro
,
Y.
,
Arima
,
H.
, and
Ikegami
,
Y.
,
2009
, “
Pressure Drop Characteristics of Flow in a Symmetric Channel With Periodically Expanded Grooves
,”
Chem. Eng. Sci.
,
64
(
3
), pp.
593
597
. 10.1016/j.ces.2008.10.041
25.
Sun
,
F.
,
Bian
,
Y.
,
Ikegami
,
Y.
,
Arima
,
H.
, and
Xu
,
X.
,
2010
, “
Strength Characteristics of the Self-sustained Wave in Grooved Channels With Different Groove Length
,”
Heat Mass Transfer
,
46
(
11
), pp.
1229
1237
. 10.1007/s00231-010-0648-9
26.
Adachi
,
T.
, and
Hasegawa
,
S.
,
2006
, “
Transition of the Flow in a Symmetric Channel With Periodically Expanded Grooves
,”
Chem. Eng. Sci.
,
61
(
8
), pp.
2721
2729
. 10.1016/j.ces.2005.11.042
27.
Prakash
,
C.
,
1981
, “
A Finite Element Method for Predicting Flow Through Ducts With Arbitrary Cross Sections
,”
Ph.D. thesis
,
University of Minnesota
,
Minneapolis, MN
.
28.
Prakash
,
C.
, and
Patankar
,
S. V.
,
1985
, “
A Control Volume-Based Finite-Element Method for Solving the Navier-Stokes Equations Using Equal-Order Velocity-Pressure Interpolation
,”
Numer. Heat Transfer
,
8
(
3
), pp.
259
280
.
29.
Saabas
,
H. J.
,
1991
, “
A Control Volume Finite Element Method for Three-Dimensional, Incompressible Viscous Fluid Flow
,”
Ph.D. thesis
,
McGill University
,
Montreal, Canada
.
30.
Saabas
,
H. J.
, and
Baliga
,
B. R.
,
1994
, “
Colocated Equal-Order Control-Volume Finite-Element Method for Multidimensional, Incompressible, Fluid Flow–Part I: Formulation
,”
Numer. Heat Transfer B
,
26
(
4
), pp.
381
407
. 10.1080/10407799408914936
31.
Saabas
,
H. J.
, and
Baliga
,
B. R.
,
1994
, “
Colocated Equal-Order Control-Volume Finite-Element Method for Multidimensional, Incompressible, Fluid Flow–Part II: Verification
,”
Numer. Heat Transfer Part B
,
26
(
4
), pp.
409
424
. 10.1080/10407799408914937
32.
Husain
,
S. R.
,
1987
, “
Extensions of the Control Volume Based Finite Element Method for Fluid Flow Problems
,” Ph.D. dissertation,
Texas A&M University
,
College Station, TX
.
33.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
34.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-sectional Area
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
180
186
. 10.1115/1.3450666
35.
Kim
,
S. H.
, and
Anand
,
N. K.
,
1992
, “
Periodically Fully Developed Flow in Channels With Conducting Blockages
,”
AIAA J. Thermophys. Heat Transfer
,
6
(
1
), pp.
91
97
. 10.2514/3.323
36.
Ijaz
,
M.
,
2007
, “
Implicit Runge-Kutta Methods to Simulate Unsteady Incompressible Flows
,” Ph.D. dissertation,
Texas A&M University
,
College Station, TX
.
You do not currently have access to this content.