Abstract

A one-dimensional opto-electro-thermal simulator for an a-Si:H-based thin-film solar cell is developed. The simulator includes optical, electrical, and thermal modeling for a complete modeling of energy conversion in a-Si:based solar cells. Particularly, the thermal impact on the performance of the cell has been studied. Cell performance is worse when thermal simulation is included compared to simulations where the temperature is kept constant. This implication suggests that cell performance is typically overestimated in simulations where the thermal effect is ignored. A simplified optical model was used, reducing the computational resources required in the study. The electrical model proposed in this study extends the classical drift-diffusion model to include the effects of temperature. The proposed thermal model considers the energy conservation in a non-thermal equilibrium condition between electron, optical phonons, and acoustic phonons. While simplifications have been used to reduce the complexity of the simulations, the program captures the essential behavior of the cell with reasonable accuracy. Hence, the developed program is useful for a-Si:H-based thin-film solar cell design and optimization.

References

1.
Shang
,
A.
, and
Li
,
X.
,
2017
, “
Photovoltaic Devices: Opto-Electro-Thermal Physics and Modeling
,”
Adv. Mater.
,
29
(
8
), p.
1603492
. 10.1002/adma.201603492
2.
Zeman
,
M.
,
Swaaij
,
R. A. C. M. M. v.
,
Metselaar
,
J. W.
, and
Schropp
,
R. E. I.
,
2000
, “
Optical Modeling of a-Si:H Solar Cells With Rough Interfaces: Effect of Back Contact and Interface Roughness
,”
J. Appl. Phys.
,
88
(
11
), pp.
6436
6443
. 10.1063/1.1324690
3.
Tan
,
H.
,
Santbergen
,
R.
,
Smets
,
A. H. M.
, and
Zeman
,
M.
,
2012
, “
Plasmonic Light Trapping in Thin-Film Silicon Solar Cells With Improved Self-assembled Silver Nanoparticles
,”
Nano Lett.
,
12
(
8
), pp.
4070
4076
. 10.1021/nl301521z
4.
Razykov
,
T. M.
,
Ferekides
,
C. S.
,
Morel
,
D.
,
Stefanakos
,
E.
,
Ullal
,
H. S.
, and
Upadhyaya
,
H. M.
,
2011
, “
Solar Photovoltaic Electricity: Current Status and Future Prospects
,”
Sol. Energy
,
85
(
8
), pp.
1580
1608
. 10.1016/j.solener.2010.12.002
5.
Vasileska
,
D.
,
Goodnick
,
S. M.
, and
Klimeck
,
G.
,
2017
,
Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation
,
CRC Press
,
Boca Raton, FL
.
6.
Zhu
,
H.
,
Kalkan
,
A. K.
,
Hou
,
J.
, and
Fonash
,
S. J.
,
1999
, “
Applications of AMPS-1D for Solar Cell Simulation
,”
AIP Conf. Proc.
,
462
(
1
), pp.
309
314
. 10.1063/1.57978
7.
Kida
,
H.
,
Itoh
,
M.
,
Fukazawa
,
S.
,
Ohta
,
T.
, and
Yamamoto
,
K.
,
1989
, “
A Device Modeling of Amorphous Silicon Based Tandem Solar Cells
,”
Jpn. J. Appl. Phys.
,
28
(
Part 2, No. 9
), pp.
L1499
L1501
. 10.1143/JJAP.28.L1499
8.
Zeman
,
M.
,
Willemen
,
J. A.
,
Vosteen
,
L. L. A.
,
Tao
,
G.
, and
Metselaar
,
J. W.
,
1997
, “
Computer Modelling of Current Matching in a-Si : H/a-Si : H Tandem Solar Cells on Textured TCO Substrates
,”
Sol. Energy Mater. Sol. Cells
,
46
(
2
), pp.
81
99
. 10.1016/S0927-0248(96)00094-3
9.
Prasai
,
K.
,
Biswas
,
P.
, and
Drabold
,
D. A.
,
2016
, “
Electrons and Phonons in Amorphous Semiconductors
,”
Semicond. Sci. Technol.
,
31
(
7
), p.
073002
. 10.1088/0268-1242/31/7/073002
10.
Wingert
,
M. C.
,
Zheng
,
J.
,
Kwon
,
S.
, and
Chen
,
R.
,
2016
, “
Thermal Transport in Amorphous Materials: A Review
,”
Semicond. Sci. Technol.
,
31
(
11
), p.
113003
. 10.1088/0268-1242/31/11/113003
11.
Chen
,
X.
,
Jia
,
B.
,
Saha
,
J. K.
,
Cai
,
B.
,
Stokes
,
N.
,
Qiao
,
Q.
,
Wang
,
Y.
,
Shi
,
Z.
, and
Gu
,
M.
,
2012
, “
Broadband Enhancement in Thin-Film Amorphous Silicon Solar Cells Enabled by Nucleated Silver Nanoparticles
,”
Nano Lett.
,
12
(
5
), pp.
2187
2192
. 10.1021/nl203463z
12.
Springer
,
J.
,
Poruba
,
A.
, and
Vanecek
,
M.
,
2004
, “
Improved Three-Dimensional Optical Model for Thin-Film Silicon Solar Cells
,”
J. Appl. Phys.
,
96
(
9
), pp.
5329
5337
. 10.1063/1.1784555
13.
Krc
,
J.
,
2016
,
Optical Modeling and Simulation of Thin-Film Photovoltaic Devices
,
CRC Press
,
Boca Raton, FL
.
14.
Born
,
M.
, and
Wolf
,
E.
,
2013
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
,
Elsevier
,
New York
.
15.
Caughey
,
D. M.
, and
Thomas
,
R. E.
,
1967
, “
Carrier Mobilities in Silicon Empirically Related to Doping and Field
,”
Proceedings IEEE
,
55
(
12
), pp.
2192
2193
. 10.1109/PROC.1967.6123
16.
Klaassen
,
D. B. M.
,
1992
, “
A Unified Mobility Model for Device Simulation—I. Model Equations and Concentration Dependence
,”
Solid-State Electron.
,
35
(
7
), pp.
953
959
. 10.1016/0038-1101(92)90325-7
17.
Kaiblinger-Grujin
,
G.
, and
Selberherr
,
S.
,
1998
, “
A Universal Low-Field Electron Mobility Model for Semiconductor Device Simulation
,”
Technical Proceedings of the 1998 International Conference on Modeling and Simulation of Microsystems
,
Santa Clara Marriott, Santa Clara, CA
,
Apr. 6–8
, pp.
70
75
.
18.
Arora
,
N. D.
,
Hauser
,
J. R.
, and
Roulston
,
D. J.
,
1982
, “
Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature
,”
IEEE Trans. Electron. Devices
,
29
(
2
), pp.
292
295
. 10.1109/T-ED.1982.20698
19.
Vasileska
,
D.
,
2006
, “Computational Electronics,” Arizona State University, Tempe, AZ, https://nanohub.org/resources/1500
20.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
New York
.
21.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
New York
.
22.
Meinerzhagen
,
B.
, and
Engl
,
W. L.
,
1988
, “
The Influence of the Thermal Equilibrium Approximation on the Accuracy of Classical Two-Dimensional Numerical Modeling of Silicon Submicrometer MOS Transistors
,”
IEEE Trans. Electron. Devices
,
35
(
5
), pp.
689
697
. 10.1109/16.2514
23.
Wong
,
B. T.
, and
Mengüç
,
M. P.
,
2008
,
Thermal Transport for Applications in Micro/Nanomachining
,
Springer Science & Business Media
,
Germany
.
24.
Poruba
,
A.
,
Springer
,
J.
,
Mullerova
,
L.
,
Beitlerova
,
A.
,
Vaněček
,
M.
,
Wyrsch
,
N.
, and
Shah
,
A.
,
2004
, “
Temperature Dependence of the Optical Absorption Coefficient of Microcrystalline Silicon
,”
J. Non-Cryst. Solids
,
338–340
, pp.
222
227
. 10.1016/j.jnoncrysol.2004.02.058
25.
Tardy
,
J.
, and
Meaudre
,
R.
,
1981
, “
The Temperature Dependence of Optical Gap and Photoconductivity Threshold in Undoped Hydrogenated Amorphous Silicon Films
,”
Solid State Commun.
,
39
(
10
), pp.
1031
1034
. 10.1016/0038-1098(81)90201-5
26.
Vasileska
,
D.
,
Raleva
,
K.
, and
Goodnick
,
S. M.
,
2008
, “
Modeling Heating Effects in Nanoscale Devices: The Present and the Future
,”
J. Comput. Electron.
,
7
(
2
), pp.
66
93
. 10.1007/s10825-008-0254-y
27.
Lee
,
C.
,
Efstathiadis
,
H.
,
Raynolds
,
J. E.
, and
Haldar
,
P.
,
2009
, “
Two-dimensional Computer Modeling of Single Junction a-Si:H Solar Cells
,”
Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC)
,
Philadelphia, PA
,
June 7–12
, pp.
001118
001122
.
28.
Jiang
,
L.
, and
Tsai
,
H.-L.
,
2005
, “
Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1167
1173
. 10.1115/1.2035113
You do not currently have access to this content.