Abstract

A detailed heat transfer numerical study of a three-dimensional impinging jet on a roughened isothermal surface is presented and is investigated from flow physics vantage point under the influence of different parameters. The effects of the Reynolds number, roughness location, and roughness dimension on the flow physics and heat transfer parameters are studied. Additionally, the relations between average heat transfer coefficient (AHTC) and flow physics including pressure, wall shear and flow vortices with thermodynamic nonequilibrium are offered. This paper studies the effect of varying both location and dimension of the roughness element which took the shape of square cross-sectional continuous ribs to deliver a favorable trade-off between total pressure loss and heat transfer rate. The roughness element was tested for three different radial locations (R/D) = 1, 1.5, and 2 and at each location its height (i.e., width) (e) was changed from 0.25 to 1 mm in incremental steps of 0.25. The study used a jet angle (α) of 90 deg, jet-to-target distance (H/D = 6), and Re ranges from 10,000 to 50,000, where H is the vertical distance between the target plate and jet exit. The results show that the AHTC can be significantly affected by changing the geometry and dimensions of the roughness element. This variation can be either an augmentation of, or decrease in, the (HTC) when compared with the baseline case. An enhancement of 12.9% in the AHTC was achieved by using optimal location and dimensions of the roughness element at specific Reynolds number. However, a diminution between 10% and 30% in (AHTC) was attained by the use of rib height e = 1 mm at Re = 50k. The variation of both rib location and height showed better contribution in increasing heat transfer for low-range Reynolds numbers.

References

1.
Xu
,
P.
,
Sasmito
,
A. P.
,
Qiu
,
S.
,
Mujumdar
,
A. S.
,
Xu
,
L.
, and
Geng
,
L.
,
2016
, “
Heat Transfer and Entropy Generation in Air Jet Impingement on a Model Rough Surface
,”
Int. Commun. Heat Mass Transfer
,
72
, pp.
48
56
. 10.1016/j.icheatmasstransfer.2016.01.007
2.
Gabour
,
L. A.
, and
Lienhard
,
J. H.
,
1994
, “
Wall Roughness Effects on Stagnation-Point Heat Transfer Beneath an Impinging Liquid Jet
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
81
87
. 10.1115/1.2910887
3.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
. 10.1016/j.ijthermalsci.2010.11.008
4.
Rao
,
Y.
,
Chen
,
P.
, and
Wan
,
C.
,
2016
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on the Surface With Micro W-Shaped Ribs
,”
Int. J. Heat Mass Transfer
,
93
, pp.
683
694
. 10.1016/j.ijheatmasstransfer.2015.10.022
5.
Beitelmal
,
A. H.
, and
Saad
,
M. A.
,
2000
, “
Effects of Surface Roughness on the Average Heat Transfer of an Impinging Air Jet
,”
Int. Commun. Heat Mass Transfer
,
27
(
1
), pp.
1
12
. 10.1016/S0735-1933(00)00079-8
6.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
,
2002
, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
22
28
. 10.1016/S0142-727X(01)00139-4
7.
Yilbas
,
B. S.
,
Arif
,
A. F. M.
, and
Abdul Aleem
,
B. J.
,
2010
, “
Laser Cutting of Sharp Edge: Thermal Stress Analysis
,”
Opt. Lasers Eng.
,
48
(
1
), pp.
10
19
. 10.1016/j.optlaseng.2009.03.006
8.
Sheikh-Ahmad
,
J.
, and
Chipalkati
,
P.
,
2015
, “
Effect of Cutting Edge Geometry on Thermal Stresses and Failure of Diamond Coated Tools
,”
Proc. Manuf.
,
1
, pp.
663
674
. 10.1016/j.promfg.2015.09.071
9.
Kim
,
W. S.
, and
Lee
,
S. Y.
,
2014
, “
Behavior of a Water Drop Impinging on Heated Porous Surfaces
,”
Exp. Therm. Fluid. Sci.
,
55
, pp.
62
70
. 10.1016/j.expthermflusci.2014.02.023
10.
Celik
,
N.
,
2011
, “
Effects of the Surface Roughness on Heat Transfer of Perpendicularly Impinging Co-Axial Jet
,”
Heat Mass Transfer/Waerme Stoffuebertragung
,
47
(
10
), pp.
1209
1217
. 10.1007/s00231-011-0785-9
11.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
. 10.1016/j.ijheatmasstransfer.2010.05.006
12.
Nadda
,
R.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2017
, “
Developing Heat Transfer and Friction Loss in an Impingement Jets Solar Air Heater With Multiple Arc Protrusion Obstacles
,”
Sol. Energy
,
158
(
June
), pp.
117
131
. 10.1016/j.solener.2017.09.042
13.
Wang
,
S.
,
Du
,
W.
,
Luo
,
L.
,
Qiu
,
D.
,
Zhang
,
X.
, and
Li
,
S.
,
2018
, “
Flow Structure and Heat Transfer Characteristics of a Dimpled Wedge Channel With a Bleed Hole in Dimple at Different Orientations and Locations
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1216
1230
. 10.1016/j.ijheatmasstransfer.2017.10.087
14.
Alhajeri
,
H. M.
,
Almutairi
,
A.
,
Alenezi
,
A. H.
, and
Gamil
,
A. A. A.
,
2019
, “
Numerical Investigation on Heat Transfer Performance and Flow Characteristics in a Roughened Vortex Chamber
,”
Appl. Therm. Eng.
,
153
, pp.
58
68
. 10.1016/j.applthermaleng.2019.02.071
15.
Attalla
,
M.
,
Abdel Samee
,
A. A.
, and
Salem
,
N.
,
2020
, “
Experimental Investigation of Heat Transfer of Impinging Jet on a Roughened Plate by a Micro Cubic Shape
,”
Experimental Heat Transfer
,
33
(
3
), pp.
210
225
. 10.1080/08916152.2019.1614113
16.
Wang
,
G.
,
Qian
,
N.
, and
Ding
,
G.
,
2019
, “
Heat Transfer Enhancement in Microchannel Heat Sink With Bidirectional Rib
,”
Int. J. Heat Mass Transfer
,
136
, pp.
597
609
. 10.1016/j.ijheatmasstransfer.2019.02.018
17.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
. 10.1016/j.ijheatmasstransfer.2012.03.022
18.
Prajapati
,
Y. K.
,
2019
, “
Influence of Fin Height on Heat Transfer and Fluid Flow Characteristics of Rectangular Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
137
, pp.
1041
1052
. 10.1016/j.ijheatmasstransfer.2019.04.012
19.
Kewalramani
,
G. V.
,
Hedau
,
G.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2019
, “
Study of Laminar Single Phase Frictional Factor and Nusselt Number in In-Line Micro Pin-Fin Heat Sink for Electronic Cooling Applications
,”
Int. J. Heat Mass Transfer
,
138
, pp.
796
808
. 10.1016/j.ijheatmasstransfer.2019.04.118
20.
Choudhary
,
V.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2019
, “
Experimental Investigation of Enhanced Performance of Pin Fin Heat Sink With Wings
,”
Appl. Therm. Eng.
,
155
, pp.
546
562
. 10.1016/j.applthermaleng.2019.03.139
21.
Yang
,
D.
,
Jin
,
Z.
,
Wang
,
Y.
,
Ding
,
G.
, and
Wang
,
G.
,
2017
, “
Heat Removal Capacity of Laminar Coolant Flow in a Micro Channel Heat Sink With Different Pin Fins
,”
Int. J. Heat Mass Transfer
,
113
, pp.
366
372
. 10.1016/j.ijheatmasstransfer.2017.05.106
22.
Wang
,
Y.
,
Zhu
,
K.
,
Cui
,
Z.
, and
Wei
,
J.
,
2019
, “
Effects of the Location of the Inlet and Outlet on Heat Transfer Performance in Pin Fin CPU Heat Sink
,”
Appl. Therm. Eng.
,
151
, pp.
506
513
. 10.1016/j.applthermaleng.2019.02.030
23.
Wang
,
G.
,
Chen
,
T.
,
Tian
,
M.
, and
Ding
,
G.
,
2020
, “
Fluid and Heat Transfer Characteristics of Microchannel Heat Sink With Truncated Rib on Sidewall
,”
Int. J. Heat Mass Transfer
,
148
, p.
119142
. 10.1016/j.ijheatmasstransfer.2019.119142
24.
Ravanji
,
A.
, and
Zargarabadi
,
M. R.
,
2020
, “
Effects of Elliptical Pin-Fins on Heat Transfer Characteristics of a Single Impinging Jet on a Concave Surface
,”
Int. J. Heat Mass Transfer
,
152
, p.
119532
. 10.1016/j.ijheatmasstransfer.2020.119532
25.
Hadipour
,
A.
,
Rajabi Zargarabadi
,
M.
, and
Dehghan
,
M.
,
2020
, “
Effect of Micro-Pin Characteristics on Flow and Heat Transfer by a Circular Jet Impinging to the Flat Surface
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
943
951
. 10.1007/s10973-019-09232-2
26.
O’Donovan
,
T. S.
, and
Murray
,
B. D.
,
2007
, “
Jet Impingement Heat Transfer—Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3291
3301
. 10.1016/j.ijheatmasstransfer.2007.01.044
27.
Alimohammadi
,
S.
,
Murray
,
D. B.
, and
Persoons
,
T.
,
2014
, “
Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet
,”
ASME J. Heat Transfer
,
136
(
9
), pp.
1
10
. 10.1115/1.4027840
28.
ANSYS Fluent Tutorial Guide 18
,
2018
, “
ANSYS Fluent Tutorial Guide 18
,”
ANSYS Fluent Tutorial Guide 18
,
15317
, pp.
724
746
.
29.
Sagot
,
B.
,
Antonini
,
G.
,
Christgen
,
A.
, and
Buron
,
F.
,
2008
, “
Jet Impingement Heat Transfer on a Flat Plate at a Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1610
1619
. 10.1016/j.ijthermalsci.2007.10.020
30.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
,
2019
, “
Numerical Study of Free Surface Jet Impingement on Orthogonal Surface
,”
Int. J. Multiphase Flow
,
113
, pp.
89
106
. 10.1016/j.ijmultiphaseflow.2019.01.001
31.
Yuan
,
J.
, and
Piomelli
,
U.
,
2014
, “
Estimation and Prediction of the Roughness Function on Realistic Surfaces
,”
J. Turbulence
,
15
, pp.
1
6
. 10.1080/14685248.2013.871023
32.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Heat Transfer Enhancement on a Flat Surface With Axisymmetric Detached Ribs by Normal Impingement of Circular Air Jet
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1279
1294
. 10.1016/j.ijheatfluidflow.2008.05.003
33.
Gau
,
C.
, and
Lee
,
I. C.
,
2000
, “
Flow and Impingement Cooling Heat Transfer Along Triangular Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3009
3020
. 10.1016/0017-9310(92)90320-R
34.
Zhou
,
J.
,
Wang
,
W.
,
G
,
Y.
,
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Unsteady jet Impingement: Heat Transfer on Smooth and non-Smooth Surfaces
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
103
110
. 10.1016/j.icheatmasstransfer.2008.10.020
You do not currently have access to this content.