Abstract

High-intensity focused ultrasound (HIFU) is a promising therapy for thermal ablation and hyperthermia, characterized by its non-invasiveness and high penetration depth. Effective HIFU thermo-therapy requires the ability to accurately predict temperature elevation and corresponding thermal dose distribution in target tissues. We report a parametric numerical study of the thermal response and corresponding of thermal dose in a soft tissue in response to ultrasound. We compared the predictions of tissue models with two, three, and seven layers, to ultrasound-induced heating at duty cycles ranging from 0.6 and 0.9. Further, two tumor sizes and transducer powers (10 W and 15 W) were considered. The inhomogeneous Helmholtz equation was coupled with the Pennes bio-heat equation to predict heating in response to pulsed ultrasound. Necrotic lesion size was calculated using the cumulative equivalent minute (CEM) thermal dose function. In-vitro experiments were performed with agar-based tissue phantoms as a preliminary validation of the numerical results. The simulations conducted with the seven-layered model predicted up to 33.5% lower peak pressure amplitude than the three-layered model. As the ultrasound pulse width decreased with the equivalent sonication time fixed, the corresponding magnitude of the peak temperature and the rate of temperature rise decreased. Pulsed ultrasound resulted in the increased volume of necrotic lesions for an equivalent time of sonication. The findings of this study highlight the dependence of HIFU-induced heating on target geometry and acoustic properties and could help guide the choice of suitable ultrasound exposure parameters for further studies.

References

1.
Siegel
,
R. L.
,
Miller
,
K. D.
, and
Jemal
,
A.
,
2020
, “
Cancer Statistics, 2020
,”
CA Cancer J. Clin.
,
70
(
1
), pp.
7
30
. 10.3322/caac.21590
2.
Cardinal
,
J.
,
Klune
,
J. R.
,
Chory
,
E.
,
Jeyabalan
,
G.
,
Kanzius
,
J. S.
,
Nalesnik
,
M.
, and
Geller
,
D. A.
,
2008
, “
Noninvasive Radiofrequency Ablation of Cancer Targeted by Gold Nanoparticles
,”
Surgery
,
144
(
2
), pp.
125
132
. 10.1016/j.surg.2008.03.036
3.
Paul
,
A.
,
Narasimhan
,
A.
,
Kahlen
,
F. J.
, and
Das
,
S. K.
,
2014
, “
Temperature Evolution in Tissues Embedded With Large Blood Vessels During Photo-Thermal Heating
,”
J. Therm. Biol.
,
41
(
1
), pp.
77
87
. 10.1016/j.jtherbio.2014.02.010
4.
Paul
,
A.
, and
Paul
,
A.
,
2020
, “
In-Vitro Thermal Assessment of Vascularized Tissue Phantom in Presence of Gold Nanorods During Photo-Thermal Therapy
,”
ASME J. Heat Transfer
,
142
(
10
), pp.
1
14
. 10.1115/1.4047371
5.
Zhao
,
F.
, and
Chen
,
Z.
,
2011
, “
Three-Dimensional Numerical Study on Freezing Phase Change Heat Transfer in Biological Tissue Embedded With Two Cryoprobes
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), pp.
1
7
. 10.1115/1.4004425
6.
Sukumar
,
S.
, and
Kar
,
S. P.
,
2020
, “
A Combined Conduction–Radiation Model for Analyzing the Role of Radiation on Freezing of a Biological Tissue
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), pp.
1
11
. 10.1115/1.4044428
7.
Simon
,
C. J.
,
Dupuy
,
D. E.
, and
Mayo-Smith
,
W. W.
,
2005
, “
Microwave Ablation: Principles and Applications
,”
Radiographics
,
25
.
8.
Liu
,
J.
,
Zhu
,
L.
, and
Xu
,
L. X.
,
2000
, “
Studies on the Three-Dimensional Temperature Transients in the Canine Prostate During Transurethral Microwave Thermal Therapy
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
372
379
. 10.1115/1.1288208
9.
Kennedy
,
J. E.
,
2005
, “
High-Intensity Focused Ultrasound in the Treatment of Solid Tumours
,”
Nat. Rev. Cancer
,
5
(
4
), pp.
321
327
. 10.1038/nrc1591
10.
Zhou
,
Y.-F.
,
2011
, “
High Intensity Focused Ultrasound in Clinical Tumor Ablation
,”
World J. Clin. Oncol.
,
2
(
1
), p.
8
. 10.5306/wjco.v2.i1.8
11.
Montienthong
,
P.
, and
Rattanadecho
,
P.
,
2019
, “
Focused Ultrasound Ablation for the Treatment of Patients With Localized Deformed Breast Cancer: Computer Simulation
,”
ASME J. Heat Transfer
,
141
(
10
), pp.
1
16
. 10.1115/1.4044393
12.
Beik
,
J.
,
Abed
,
Z.
,
Ghoreishi
,
F. S.
,
Hosseini-Nami
,
S.
,
Mehrzadi
,
S.
,
Shakeri-Zadeh
,
A.
, and
Kamrava
,
S. K.
,
2016
, “
Nanotechnology in Hyperthermia Cancer Therapy: From Fundamental Principles to Advanced Applications
,”
J. Control. Release
,
235
, pp.
205
221
. 10.1016/j.jconrel.2016.05.062
13.
Bhowmik
,
A.
,
Repaka
,
R.
,
Mishra
,
S. C.
, and
Mitra
,
K.
,
2016
, “
Thermal Assessment of Ablation Limit of Subsurface Tumor During Focused Ultrasound and Laser Heating
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), pp.
1
12
. 10.1115/1.4030731
14.
Tachibana
,
K.
, and
Tachibana
,
S.
,
2001
, “
The Use of Ultrasound for Drug Delivery
,”
Echocardiography
,
18
(
4
), pp.
323
328
. 10.1046/j.1540-8175.2001.00323.x
15.
Treat
,
L. H.
,
McDannold
,
N.
,
Zhang
,
Y.
,
Vykhodtseva
,
N.
, and
Hynynen
,
K.
,
2012
, “
Improved Anti-Tumor Effect of Liposomal Doxorubicin After Targeted Blood-Brain Barrier Disruption by MRI-Guided Focused Ultrasound in Rat Glioma
,”
Ultrasound Med. Biol.
,
38
(
10
), pp.
1716
1725
. 10.1016/j.ultrasmedbio.2012.04.015
16.
Shekhar
,
H.
,
Kleven
,
R. T.
,
Peng
,
T.
,
Palaniappan
,
A.
,
Karani
,
K. B.
,
Huang
,
S.
,
McPherson
,
D. D.
, and
Holland
,
C. K.
,
2019
, “
In Vitro Characterization of Sonothrombolysis and Echocontrast Agents to Treat Ischemic Stroke
,”
Sci. Rep.
,
9
(
1
), pp.
1
13
. 10.1038/s41598-019-46112-z
17.
Zhu
,
L.
,
Altman
,
M. B.
,
Laszlo
,
A.
,
Straube
,
W.
,
Zoberi
,
I.
,
Hallahan
,
D. E.
, and
Chen
,
H.
,
2019
, “
Ultrasound Hyperthermia Technology for Radiosensitization
,”
Ultrasound Med. Biol.
,
45
(
5
), pp.
1025
1043
. 10.1016/j.ultrasmedbio.2018.12.007
18.
He
,
Z. Z.
,
Xue
,
X.
, and
Liu
,
J.
,
2013
, “
An Effective Finite Difference Method for Simulation of Bioheat Transfer in Irregular Tissues
,”
ASME J. Heat Transfer
,
135
(
7
), pp.
1
9
. 10.1115/1.4024064
19.
Jafarian Dehkordi
,
F.
,
Shakeri-Zadeh
,
A.
,
Khoei
,
S.
,
Ghadiri
,
H.
, and
Shiran
,
M.-B.
,
2013
, “
Thermal Distribution of Ultrasound Waves in Prostate Tumor: Comparison of Computational Modeling With In Vivo Experiments
,”
ISRN Biomath.
,
2013
, pp.
1
4
. 10.1155/2013/428659
20.
Sheu
,
T. W. H.
,
Solovchuk
,
M. A.
,
Chen
,
A. W. J.
, and
Thiriet
,
M.
,
2011
, “
On an Acoustics-Thermal-Fluid Coupling Model for the Prediction of Temperature Elevation in Liver Tumor
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4117
4126
. 10.1016/j.ijheatmasstransfer.2011.03.045
21.
Kumar
,
D.
, and
Rai
,
K. N.
,
2016
, “
A Study on Thermal Damage During Hyperthermia Treatment Based on DPL Model for Multilayer Tissues Using Finite Element Legendre Wavelet Galerkin Approach
,”
J. Therm. Biol.
,
62
, pp.
170
180
. 10.1016/j.jtherbio.2016.06.020
22.
Namakshenas
,
P.
, and
Mojra
,
A.
,
2019
, “
Numerical Study of Non-Fourier Thermal Ablation of Benign Thyroid Tumor by Focused Ultrasound (FU)
,”
Biocybern. Biomed. Eng.
,
39
(
3
), pp.
571
585
. 10.1016/j.bbe.2019.05.003
23.
Lin
,
J.
,
Liu
,
X.
, and
Gong
,
X.
,
2013
, “
Computational Study on the Propagation of Strongly Focused Nonlinear Ultrasound in Tissue With Rib-Like Structures
,”
J. Acoust. Soc. Am.
,
134
(
2
), pp.
1702
1716
.
24.
Gupta
,
P.
, and
Srivastava
,
A.
,
2018
, “
Numerical Analysis of Thermal Response of Tissues Subjected to High Intensity Focused Ultrasound
,”
Int. J. Hyperth.
,
35
(
1
), pp.
419
434
. 10.1080/02656736.2018.1506166
25.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2020
, “
Acoustic Streaming Effect on Flow and Heat Transfer in Porous Tissue During Exposure to Focused Ultrasound
,”
Case Stud. Therm. Eng.
,
21
, p.
100670
. 10.1016/j.csite.2020.100670
26.
Hariharan
,
P.
,
Myers
,
M. R.
, and
Banerjee
,
R. K.
,
2007
, “
HIFU Procedures at Moderate Intensities—Effect of Large Blood Vessels
,”
Phys. Med. Biol.
,
52
(
12
), pp.
3493
3513
. 10.1088/0031-9155/52/12/011
27.
Guntur
,
S. R.
, and
Choi
,
M. J.
,
2015
, “
Influence of Temperature-Dependent Thermal Parameters on Temperature Elevation of Tissue Exposed to High-Intensity Focused Ultrasound: Numerical Simulation
,”
Ultrasound Med. Biol.
,
41
(
3
), pp.
806
813
. 10.1016/j.ultrasmedbio.2014.10.008
28.
Hallaj
,
I. M.
,
Cleveland
,
R. O.
, and
Hynynen
,
K.
,
2001
, “
Simulations of the Thermo-Acoustic Lens Effect During Focused Ultrasound Surgery
,”
J. Acoust. Soc. Am.
,
109
(
5
), pp.
2245
2253
. 10.1121/1.1360239
29.
Casarotto
,
R. A.
,
Adamowski
,
J. C.
,
Fallopa
,
F.
, and
Bacanelli
,
F.
,
2004
, “
Coupling Agents in Therapeutic Ultrasound: Acoustic and Thermal Behavior
,”
Arch. Phys. Med. Rehabil.
,
85
(
1
), pp.
162
165
. 10.1016/S0003-9993(03)00293-4
30.
Assi
,
H.
, and
Cobbold
,
R. S.
,
2017
, “
Compact Second-Order Time-Domain Perfectly Matched Layer Formulation for Elastic Wave Propagation in Two Dimensions
,”
Math. Mech. Solids
,
22
(
1
), pp.
20
37
. 10.1177/1081286515569266
31.
Lang
,
B. H.
, and
Wu
,
A. L. H.
,
2018
, “
The Efficacy and Safety of High-Intensity Focused Ultrasound Ablation of Benign Thyroid Nodules
,”
Ultrasonography
,
37
(
2
), pp.
89
97
. 10.14366/usg.17057
32.
Gupta
,
P.
, and
Srivastava
,
A.
,
2019
, “
Non-Fourier Transient Thermal Analysis of Biological Tissue Phantoms Subjected to High Intensity Focused Ultrasound
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1052
1063
. 10.1016/j.ijheatmasstransfer.2019.03.014
33.
McIntosh
,
R. L.
, and
Anderson
,
V.
,
2010
, “
A Comprehensive Tissue Properties Database Provided for the Thermal Assessment of a Human at Rest
,”
Biophys. Rev. Lett.
,
5
(
3
), pp.
129
151
. 10.1142/S1793048010001184
34.
Kyriakou
,
A.
,
Neufeld
,
E.
,
Werner
,
B.
,
Székely
,
G.
, and
Kuster
,
N.
,
2015
, “
Full-Wave Acoustic and Thermal Modeling of Transcranial Ultrasound Propagation and Investigation of Skull-Induced Aberration Correction Techniques: A Feasibility Study
,”
J. Ther. Ultrasound
,
3
(
1
), pp.
1
18
. 10.1186/s40349-015-0032-9
35.
Chivers
,
R. C.
, and
Parry
,
R. J.
,
1978
, “
Ultrasonic Velocity and Attenuation in Mammalian Tissues
,”
J. Acoust. Soc. Am.
,
63
(
3
), pp.
940
953
. 10.1121/1.381774
36.
Duck
,
F. A.
,
1990
, “Acoustic Properties of Tissue at Ultrasonic Frequencies,”
Physical Properties of Tissues
,
Academic Press
,
London
, pp.
73
135
. 10.1016/B978-0-12-222800-1.50008-5
37.
El-Brawany
,
M. A.
,
Nassiri
,
D. K.
,
Terhaar
,
G.
,
Shaw
,
A.
,
Rivens
,
I.
, and
Lozhken
,
K.
,
2009
, “
Measurement of Thermal and Ultrasonic Properties of Some Biological Tissues
,”
J. Med. Eng. Technol.
,
33
(
3
), pp.
249
256
. 10.1080/03091900802451265
38.
Johnston
,
R. L.
,
Dunn
,
F.
, and
Goss
,
S. A.
,
1980
, “
Compilation of Empirical Ultrasonic Properties of Mammalian Tissues
,”
J. Acoust. Soc. Am.
,
68
(
1
), pp.
93
108
. 10.1121/1.384509
39.
Tan
,
Q.
,
Zou
,
X.
,
Ding
,
Y.
,
Zhao
,
X.
, and
Qian
,
S.
,
2018
, “
The Influence of Dynamic Tissue Properties on HIFU Hyperthermia: A Numerical Simulation Study
,”
Appl. Sci.
,
8
(
10
), p.
1933
. 10.3390/app8101933
40.
Hallaj
,
I. M.
, and
Cleveland
,
R. O.
,
1999
, “
FDTD Simulation of Finite-Amplitude Pressure and Temperature Fields for Biomedical Ultrasound
,”
J. Acoust. Soc. Am.
,
105
(
5
), pp.
L7
L12
. 10.1121/1.426776
41.
Huttunen
,
T.
,
Malinen
,
M.
,
Kaipio
,
J. P.
,
White
,
P. J.
, and
Hynynen
,
K.
,
2005
, “
A Full-Wave Helmholtz Model for Continuous-Wave Ultrasound Transmission
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
3
), pp.
397
409
. 10.1109/TUFFC.2005.1417262
42.
Comsol
,
2010
, “Acoustics Module,” Interfaces (Providence), pp.
1
218
.
43.
COMSOL Multiphysics
,
2015
, “Heat Transfer Module,” Manual, pp.
1
222
.
44.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
. 10.1152/jappl.1948.1.2.93
45.
Nyborg
,
W. L.
,
1981
, “
Heat Generation by Ultrasound in a Relaxing Medium
,”
J. Acoust. Soc. Am.
,
70
(
2
), pp.
310
312
. 10.1121/1.386778
46.
Szabo
,
T. L.
,
1995
, “
Causal Theories and Data for Acoustic Attenuation Obeying a Frequency Power Law
,”
J. Acoust. Soc. Am.
,
97
(
1
), pp.
14
24
. 10.1121/1.412332
47.
Damianou
,
C. A.
,
Hynynen
,
K.
, and
Fan
,
X.
,
1995
, “
Evaluation of Accuracy of a Theoretical Model for Predicting the Necrosed Tissue Volume During Focused Ultrasound Surgery
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
42
(
2
), pp.
182
187
. 10.1109/58.365232
48.
Mamvura
,
T. A.
,
Iyuke
,
S. E.
, and
Paterson
,
A. E.
,
2018
, “
Energy Changes During Use of High-Power Ultrasound on Food Grade Surfaces
,”
South African J. Chem. Eng.
,
25
, pp.
62
73
. 10.1016/j.sajce.2017.12.001
49.
Techavipoo
,
U.
,
Varghese
,
T.
,
Zagzebski
,
J. A.
,
Stiles
,
T.
, and
Frank
,
G.
,
2002
, “
Temperature Dependence of Ultrasonic Propagation Speed and Attenuation in Canine Tissue
,”
Ultrason. Imaging
,
24
(
4
), pp.
246
260
. 10.1177/016173460202400404
50.
Larkin
,
J. O.
,
Casey
,
G. D.
,
Tangney
,
M.
,
Cashman
,
J.
,
Collins
,
C. G.
,
Soden
,
D. M.
, and
O’Sullivan
,
G. C.
,
2008
, “
Effective Tumor Treatment Using Optimized Ultrasound-Mediated Delivery of Bleomycin
,”
Ultrasound Med. Biol.
,
34
(
3
), pp.
406
413
. 10.1016/j.ultrasmedbio.2007.09.005
51.
Sapareto
,
S. A.
, and
Dewey
,
W. C.
,
1984
, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
10
(
6
), pp.
787
800
. 10.1016/0360-3016(84)90379-1
52.
Shekhar
,
H.
,
Smith
,
N. J.
,
Raymond
,
J. L.
, and
Holland
,
C. K.
,
2018
, “
Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity®
,”
Ultrasound Med. Biol.
,
44
(
2
), pp.
434
446
. 10.1016/j.ultrasmedbio.2017.09.021
53.
Abdolhosseinzadeh
,
A.
,
Mojra
,
A.
, and
Ashrafizadeh
,
A.
,
2019
, “
A Numerical Study on Thermal Ablation of Brain Tumor With Intraoperative Focused Ultrasound
,”
J. Therm. Biol.
,
83
(
2
), pp.
119
133
. 10.1016/j.jtherbio.2019.05.019
54.
Fan
,
T. B.
,
Liu
,
Z. B.
,
Zhang
,
Z.
,
Zhang
,
D.
, and
Gong
,
X. F.
,
2009
, “
Modeling of Nonlinear Propagation in Multi-Layer Biological Tissues for Strong Focused Ultrasound
,”
Chinese Phys. Lett.
,
26
(
8
), pp.
6
9
.
55.
Cao
,
R.
,
Huang
,
Z.
,
Nabi
,
G.
, and
Melzer
,
A.
,
2020
, “
Patient-Specific 3-Dimensional Model for High-Intensity Focused Ultrasound Treatment Through the Rib Cage: A Preliminary Study
,”
J. Ultrasound Med.
,
39
(
5
), pp.
883
899
. 10.1002/jum.15170
56.
Salahura
,
G.
,
Tillett
,
J. C.
,
Metlay
,
L. A.
, and
Waag
,
R. C.
,
2010
, “
Large-Scale Propagation of Ultrasound in a 3-D Breast Model Based on High-Resolution MRI Data
,”
IEEE Trans. Biomed. Eng.
,
57
(
6
), pp.
1273
1284
. 10.1109/TBME.2009.2040022
57.
Canney
,
M. S.
,
Bailey
,
M. R.
,
Crum
,
L. A.
,
Khokhlova
,
V. A.
, and
Sapozhnikov
,
O. A.
,
2008
, “
Acoustic Characterization of High Intensity Focused Ultrasound Fields: A Combined Measurement and Modeling Approach
,”
J. Acoust. Soc. Am.
,
124
(
4
), pp.
2406
2420
. 10.1121/1.2967836
58.
Vlaisavljevich
,
E.
,
Lin
,
K. W.
,
Maxwell
,
A.
,
Warnez
,
M. T.
,
Mancia
,
L.
,
Singh
,
R.
,
Putnam
,
A. J.
,
Fowlkes
,
B.
,
Johnsen
,
E.
,
Cain
,
C.
, and
Xu
,
Z.
,
2015
, “
Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation
,”
Ultrasound Med. Biol.
,
41
(
6
), pp.
1651
1667
. 10.1016/j.ultrasmedbio.2015.01.028
You do not currently have access to this content.