Abstract

The thermal performance analysis of a radiator with a dissimilar shape nanoparticles, i.e., cylindrical (CNT)–platelet (graphene), spherical (Al2O3)–platelet (graphene), and spherical (Al2O3)–cylindrical (CNT) composition-based hybrid nanofluid for a coolant flowrate of 6 l/min, air velocity of 10.6 m/s, and 1.3% vol. faction of nanofluid has been studied and compared. Results revealed that a hybrid nanofluid as a coolant enhances the exergy–energy performance of the radiator. In this study, the cylindrical (CNT)–platelet (graphene) hybrid nanofluid results a decrement in the performance while the spherical (Al2O3)–platelet (graphene) hybrid nanofluid yields a better performance with coolant flowrate and air velocity. Particle shape has influenced a significant effect on the second law efficiency, exergy change, and irreversibility, which increases with an increase in air velocity, and volume fraction of hybrid nanofluid. However, the spherical (Al2O3)–platelet (graphene) hybrid nanofluid has 3.5%, 3.6%, and 1.12% higher performance index, exergy change in coolant, and second law efficiency, respectively, compared to the cylindrical (CNT)-platelet(graphene)-based hybrid nanofluid. Furthermore, results divulge that the nanoparticle shape has a notable impact on the performance of an automobile radiator. The spherical (Al2O3)–platelet (graphene) hybrid nanofluid exhibits supercilious over other shapes considered, and hence, it is more effective to use as a radiator coolant for enhancing the thermal performance.

References

1.
Goudarzi
,
K.
, and
Jamali
,
H.
,
2017
, “
Heat Transfer Enhancement of Al2O3-EG Nanofluid in a Car Radiator With Wire Coil Inserts
,”
Appl. Therm. Eng.
,
118
(
2
), pp.
510
517
. 10.1016/j.applthermaleng.2017.03.016
2.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,
ASME
,
New York
,
99
106
.
3.
Wang
,
X. Q.
, and
Majumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
. 10.1016/j.ijthermalsci.2006.06.010
4.
Wen
,
D. S.
, and
Ding
,
Y. L.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
. 10.1016/j.ijheatmasstransfer.2004.07.012
5.
Lee
,
M. Y.
,
Kim
,
Y.
, and
Lee
,
D. Y.
,
2012
, “
Experimental Study on the Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps
,”
Energies
,
5
(
9
), pp.
3479
3491
. 10.3390/en5093479
6.
Saleem
,
A.
, and
Kim
,
M. H.
,
2017
, “
CFD Analysis on the Air-Side Thermal-Hydraulic Performance of Multi-Louvered Fin Heat Exchangers at Low Reynolds Numbers
,”
Energies
,
10
(
6
), pp.
823
845
. 10.3390/en10060823
7.
Guo
,
Y.
,
Cheng
,
T.
,
Du
,
X.
, and
Yang
,
L.
,
2017
, “
Anti-freezing Mechanism Analysis of a Finned Flat Tube in an Air-Cooled Condenser
,”
Energies
,
10
(
7
), p.
1872
. 10.3390/en10111872
8.
Chen
,
H.
,
Wang
,
Y.
,
Zhao
,
Q.
,
Ma
,
H.
,
Li
,
Y.
, and
Chen
,
Z.
,
2014
, “
Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-Type Finned Tube Banks
,”
Energies
,
7
(
11
), pp.
7094
7104
. 10.3390/en7117094
9.
Heidary
,
H.
, and
Kermani
,
M. J.
,
2010
, “
Effect of Nano-Particles on Forced Convection in the Sinusoidal-Wall Channel
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1520
1527
. 10.1016/j.icheatmasstransfer.2010.08.018
10.
Heidary
,
H.
, and
Kermani
,
M. J.
,
2012
, “
Heat Transfer Enhancement in a Channel With Block(s) Effect and Utilizing Nano-fluid
,”
Int. J. Therm. Sci.
,
57
(
2
), pp.
163
171
. 10.1016/j.ijthermalsci.2012.02.001
11.
Sang
,
L.
, and
Liu
,
T.
,
2017
, “
The Enhanced Specific Heat Capacity of Ternary Carbonates Nanofluids With Different Nanoparticles
,”
Sol. Energy Mater. Sol. Cells
,
169
(
10
), pp.
297
303
. 10.1016/j.solmat.2017.05.032
12.
Su
,
X.
,
Zhang
,
M.
,
Han
,
W.
, and
Guo
,
X.
,
2015
, “
Enhancement of Transport in Oscillating Heat Pipe With Ternary Fluid
,”
Int. J. Heat Mass Transfer
,
87
(
8
), pp.
258
264
. 10.1016/j.ijheatmasstransfer.2015.04.002
13.
Albadr
,
J.
,
Tayal
,
S.
, and
Alasadi
,
M.
,
2013
, “
Heat Transfer Through a Heat Exchanger Using Al2O3 Nanofluid at Different Concentrations
,”
Case Studies Therm. Eng.
,
1
(
1
), pp.
38
44
. 10.1016/j.csite.2013.08.004
14.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2019
, “
Exergy and Energy Analysis of a Wavy Fin Radiator With Variously Shaped Nanofluids as Coolants
,”
Heat Transfer Asian Res.
,
48
(
6
), pp.
2174
2192
. 10.1002/htj.21478
15.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2019
, “
Viscosity, and Thermal Conductivity Comparative Study for Hybrid Nanofluid in Binary Base Fluids
,”
Heat Transfer Asian Res.
,
48
(
7
), pp.
3144
3161
. 10.1002/htj.21535
16.
Hajabdollahi
,
H.
, and
Hajabdollahi
,
Z.
,
2017
, “
Numerical Study on Impact Behaviors of Nanoparticle Shapes on the Performance Improvement of Shell and Tube Heat Exchanger
,”
Chem. Eng. Res. Design
,
125
(
7
), pp.
449
460
. 10.1016/j.cherd.2017.05.005
17.
Arani
,
A. A. A.
,
Sadripour
,
S.
, and
Kermani
,
S.
,
2017
, “
Nanoparticles Shape Effect on the Thermal-Hydraulic Performance of Boehmite Alumina Nanofluids in a Sinusoidal Wavy Mini-channel With Phase Shift and Variable Wavelength
,”
Int. J. Mech. Sci.
,
128
(
7
), pp.
550
563
. 10.1016/j.ijmecsci.2017.05.030
18.
Elias
,
M. M.
,
Miqdad
,
M.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
,
Kamalisarvestani
,
M.
,
Sohel
,
M. R.
,
Hepbasli
,
A.
,
Rahim
,
N. A.
, and
Amalina
,
M. A.
,
2013
, “
Effect of Nanoparticle Shape on the Heat Transfer and Thermodynamic Performance of a Shell and Tube Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
44
(
3
), pp.
93
99
. 10.1016/j.icheatmasstransfer.2013.03.014
19.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
22
), pp.
4757
4767
. 10.1016/j.ijheatmasstransfer.2010.06.016
20.
Akbarzadeh
,
M.
,
Rashidi
,
S.
,
Karimi
,
N.
, and
Omar
,
N.
,
2019
, “
First and Second Laws of Thermodynamics Analysis of Nanofluid Flow Inside a Heat Exchanger Duct With Wavy Walls and a Porous Insert
,”
J. Therm. Analys. Cal.
,
135
(
1
), pp.
177
194
. 10.1007/s10973-018-7044-y
21.
Ali
,
H. M.
,
Ali
,
H.
,
Liaquat
,
H.
,
Maqsood
,
H. T. B.
, and
Nadir
,
M. A.
,
2015
, “
Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Using ZnO-Water Nanofluids
,”
Energy
,
84
(
1
), pp.
317
324
. 10.1016/j.energy.2015.02.103
22.
Sundar
,
L. S.
,
Sharma
,
K. V.
,
Singh
,
M. K.
, and
Sousa
,
A. C.
,
2017
, “
Hybrid Nanofluids Preparation, Thermal Properties, Heat Transfer, and Friction Factor—A Review
,”
Renewable Sustainable Energy Rev.
,
68
(
1
), pp.
185
198
. 10.1016/j.rser.2016.09.108
23.
Chamkha
,
A. J.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2017
, “
Numerical Analysis of Unsteady Conjugate Natural Convection of Hybrid Water-Based Nanofluid in a Semi-circular Cavity
,”
ASME J. Therm. Sci. Eng. Ap.
,
9
(
4
), p.
041004
. 10.1115/1.4036203
24.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), p.
014304
. 10.1063/1.3155999
25.
Sahu
,
M.
, and
Sarkar
,
J.
,
2019
, “
Steady-State Energetic and Exergetic Performances of Single-Phase Natural Circulation Loop With Hybrid Nanofluids
,”
ASME J. Heat Transfer
,
141
(
8
), p.
4043819
. 10.1115/1.4043819
26.
Wais
,
P.
,
2010
, “
Fluid Flow Consideration in Fin-Tube Heat Exchanger Optimization
,”
Arch. Thermodyn.
,
31
(
1
), pp.
87
104
. 10.2478/v10173-010-0016-7
27.
Tiwari
,
A. K.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2015
, “
Particle Concentration Levels of Various Nanofluids in the Plate Heat Exchanger for Best Performance
,”
Int. J. Heat Mass Transfer
,
89
(
7
), pp.
1110
1118
. 10.1016/j.ijheatmasstransfer.2015.05.118
28.
Wang
,
C. C.
, and
Chi
,
K. Y.
,
2000
, “
Heat Transfer and Friction Characteristics of Plain Fin-and Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2681
2691
. 10.1016/S0017-9310(99)00332-4
29.
Sarkar
,
J.
, and
Trodiya
,
R.
,
2013
, “
Performance Analysis of Louvered Fin Tube Automotive Radiator Using Nanofluid as Coolants
,”
Int. J. Nanomanuf.
,
9
(
1
), pp.
1
5
. 10.1504/IJNM.2013.052881
30.
Yilmaz
,
M.
,
Saraa
,
O. N.
, and
Karsli
,
S.
,
2001
, “
Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis
,”
Exergy Int. J.
,
1
(
4
), pp.
278
294
. 10.1016/S1164-0235(01)00034-6
31.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
,
2009
, “
Second Law Based Optimization of Crossflow Plate-Fin Heat Exchanger Design Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
15
), pp.
2983
2989
. 10.1016/j.applthermaleng.2009.03.009
32.
Bhuiyan
,
A. A.
, and
Sadrul
,
A. K. M.
,
2016
, “
Thermal and Hydraulic Performance of Finned-Tube Heat Exchangers Under Different Flow Ranges: A Review on Modeling and Experiment
,”
Int. J. Heat Mass Transfer
,
101
(
8
), pp.
38
59
. 10.1016/j.ijheatmasstransfer.2016.05.022
33.
Leong
,
K. Y.
,
Saidur
,
R.
,
Mahlia
,
T. M. I.
, and
Yau
,
Y. H.
,
2012
, “
Modeling of the Shell and Tube Heat Recovery Exchanger Operated With Nanofluid Based Coolants
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
808
816
. 10.1016/j.ijheatmasstransfer.2011.10.027
34.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2016
, “
Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminum Oxide-Based Nanofluid
,”
J. Clean. Prod.
,
133
(
2
), pp.
518
530
. 10.1016/j.jclepro.2016.05.178
35.
Kumar
,
V.
, and
Sahoo
,
R. R.
,
2020
, “
Exergy and Energy Performance for Wavy Fin Radiator With a New Coolant of Various Shape Nanoparticle Based Hybrid Nanofluids
,”
J. Therm. Analys. Cal.
,
8
(
1
), pp.
1
12
. 10.1007/s10973-020-09361-z
36.
Vaisi
,
A.
,
Esmaeilpour
,
M.
, and
Taheria
,
H.
,
2011
, “
Experimental Investigation of Geometry Effects on the Performance of a Compact Heat Exchanger
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3337
3346
. 10.1016/j.applthermaleng.2011.06.014
37.
Madhesh
,
D.
, and
Kalaiselvam
,
S.
,
2014
, “
Experimental Analysis of Hybrid Nanofluid as a Coolant
,”
Proc. Eng.
,
97
(
1
), pp.
1667
1675
. 10.1016/j.proeng.2014.12.317
You do not currently have access to this content.